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A Model of Complex Contracts'

By ALEXANDER M. JAKOBSEN/*

I study a mechanism design problem involving a principal and a sin-
gle, boundedly rational agent. The agent transitions among belief
states by combining current beliefs with up to K pieces of infor-
mation at a time. By expressing a mechanism as a complex con-
tract—a collection of clauses, each providing limited information
about the mechanism—the principal manipulates the agent into
believing truthful reporting is optimal. I show that such bounded
rationality expands the set of implementable functions and that
optimal contracts are robust not only to variation in K, but to
several plausible variations on the agent’s cognitive procedure.
(JEL D82, D86)

Traditional approaches to mechanism design theory assume that when a designer
selects a mechanism, agents understand the underlying game form: the mapping
from strategy profiles to outcomes. Under this assumption, designers need only
consider the incentives induced by the underlying game. In this paper, I study a
mechanism design problem in which an agent’s comprehension of the game form is
subject to complexity constraints, distorting the mechanism’s incentive properties.
Consequently, the designer also considers agents’ bounded rationality, and may seek
mechanisms robust to (or exploitative of) limited cognitive ability.

My analysis is motivated by the presence of extreme complexity in many real-life
institutions and contracts. Tax codes and legal systems, for example, consist of
many interacting cases and contingencies, making correct identification of the game
form a daunting task. Policies for allocating jobs, promotions, financial aid, or other
scarce resources can also seem excessively complex. However, the manner in which
complexity influences the design and effectiveness of mechanisms is not well under-
stood, and analysis of these issues involves difficult conceptual challenges. What
distinguishes complex mechanisms from simple ones? How might agents go about
processing them? Can designers effectively manage the behavior of cognitively
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constrained agents? How, and to what degree, can designers accommodate hetero-
geneous cognitive procedures or abilities?

The starting point of my model is to distinguish between mechanisms and the
manner in which they are framed. I assume the designer commits to a mechanism by
announcing a contract: a collection of clauses, each providing limited information
about the mechanism. Fully rational agents combine all clauses to deduce the true
mechanism, but boundedly rational agents need not. Rather, they adhere to a given
procedure for processing and combining clauses, arriving only at coarse approxi-
mations of the true mechanism. My concept of bounded rationality rests on basic
principles of framing and procedural reasoning and, as explained in Section 1V, is
not bound to the domain of mechanism design: it can be reformulated as a general
model of non-Bayesian updating and applied to other settings.

To illustrate the procedure, consider the game Sudoku. In this game, a player is
presented with a 9 x 9 table. Some cells are initially filled with entries from the
setD = {1 32, ,9} and the player must deduce the entries for the remaining cells.
The rules are that each digit d € D must appear exactly once in (i) each row; (ii)
each column; and (iii) each of the nine primary 3 x 3 subsquares. Sudoku puzzles
are designed to have unique solutions given their initial configurations.

For a standard rational agent, there is no distinction between the initial config-
uration, together with the rules of the game, and the unique fully resolved puzzle.
To him, the combination of a partially filled table and the list of rules simply forms
a compact way of expressing all entries. Not so for most (real) people, who under-
stand both the rules of the game and the initial configuration but may find them-
selves unable to solve the puzzle.|

How might an individual go about solving a Sudoku puzzle? Consider Figure
|1.|Suppose the player notices entry 6 in positions (3,2) and (4,7). Then, rules (i)
and (ii) block 6 from appearing again in column 2 or row 4 (panel A of Figure 1).
Combined with rule (iii), this implies X (position (6,3)) must be 6. He updates the
configuration to reflect this (panel B). Looking at the new configuration, he realizes
6 cannot appear again in columns 2 or 3. Applying rule (iii), he deduces that Y
(position (8,1)) must be 6, and once again updates the configuration (panel C). He
proceeds in this fashion until the puzzle is solved or he gets “stuck.”

If agents reason this way, what distinguishes a hard puzzle from a simple one? I
propose that in simple puzzles, the player is able to “chip away” at the problem: he
can gradually fill in the cells, one at a time, without ever having to combine many
rules at once. Above, the player only had to combine three rules with his initial
knowledge to deduce X = 6, and three again to deduce Y = 6 once he updated the
configuration. In simple puzzles, proceeding in this fashion eventually yields the
solution. Hard puzzles, however, inevitably lead players to a configuration where a
large “leap of logic” (the combination of many different rules or pieces of informa-
tion) is required to make further progress. If he cannot perform the required chain of
reasoning, the player will remain stuck at such configurations.

'In other words, a rational agent is logically omniscient: if a collection of facts is known to the agent, so are
all of its logical implications. As Lipman (1999) argues, logically non-omniscient agents are sensitive to the way
information is framed: two pieces of information differing only in their presentation may not be recognized as
logically equivalent.
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Panel A. Player deduces PanelB....thenY =6 Panel C. New configuration
X=6
5 8 3 5 8 3 5 8 3
1 4 6 1 4 6 1 4 6
6 7|2 8 6 7|2 8 6 7 8
417 g 417 3|6 4 3|6
8 5 8 5 2 8 5 2
32X 8 5|1 9 326 8 5|1 9 326 8 5[1 9
7 8 9 7 8 9 7 8 9
5 8 14 Y 5 8 1 4 6 5 8 14
9 56 8 9 5 6 8 9 5 6 8

FIGURE 1. A POSSIBLE SEQUENCE OF DEDUCTIONS IN SUDOKU

My model captures this intuition by combining imperfect memory with limited
computational ability. Specifically, agents transition among a coarse set of belief
states by combining up to K pieces of information at a time. In the Sudoku example,
belief states are represented by configurations (partially filled tables), and the agent
transitions to a new state whenever he deduces the entry for another cell. Deductions
are performed by combining current beliefs with up to K pieces of information at
a time, as illustrated above. Agents continue to process information and perform
transitions until the puzzle is solved or they get stuck in a state where transitions to
finer states require the combination of more than K pieces of information. Agents
with a higher K can perform more complex deductions and, thus, solve more diffi-
cult puzzles.

Since he transitions only among coarse belief states, the agent typically does not
retain all new facts he has derived while processing information. For example, when
updating his configuration to reflect X = 6, he “forgets” that 6 has been eliminated
from column 2 and row 4. Belief states capture this forgetfulness. Note that both ele-
ments of the agent’s bounded rationality are essential: if K were unbounded or belief
states unrestricted, the agent would solve any puzzle and, thus, be indistinguishable
from a fully rational agent.

The mechanism design problem involves a principal (the designer) and a single,
boundedly rational agent. The principal seeks to implement a function mapping
agent types to outcomes, and the agent’s type is private information. Both the agent’s
preferences and outside option are type-dependent. While somewhat restrictive,
this setup accommodates a variety of persuasion, allocation, and conflict resolution
problems. For example, outcomes might represent different schools, agent types
the attributes of students, and the principal a governing body with a particular goal
(objective function) of matching student types to schools. Parents have their own
type-dependent preferences and outside options (initial allocations), introducing
conflict between the principal and agent. Similar conflicts emerge if, for example,
outcomes represent tasks, agent types the (unobservable) characteristics of employ-
ees, and the principal a manager responsible for assigning tasks to employees.

To achieve implementation, the principal commits to a mechanism (a function
mapping type reports to outcomes) by announcing a set of clauses, each providing
limited information about the mechanism. Combined, the clauses form a contract
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that pins down a single mechanism. Thus, from the agent’s perspective, the clauses
form a puzzle and the underlying mechanism its solution. Belief states are repre-
sented by correspondences mapping actions (type reports) to sets of outcomes, indi-
cating the agent’s beliefs about the possible consequences of different actions. Able
to combine up to K clauses at a time, the agent transitions to a new state whenever
some outcome is eliminated as a possible consequence of some action. Carefully
designed contracts (sets of clauses) guide the agent to belief states where truthful
reporting appears to be the safest course of action, as per the maxmin criterion.

Restricting to single-agent settings isolates the role of bounded rationality by
ruling out strategic considerations: under any mechanism, the agent’s outcome
depends only on his own action which, in turn, depends on his beliefs about the
mechanism. Since the principal cannot induce strategic incentives for truth-telling,
very few functions are implementable under full rationality: under any contract, a
rational agent deduces the outcome associated with each action and chooses his
most-preferred alternative. Thus, any conflict between the preferences of the agent
and the objective of the principal renders the situation hopeless. With boundedly
rational agents, however, the set of implementable functions is considerably larger.

After establishing a version of the revelation principle in Theorem 1, Theorem
2 fully characterizes the set of implementable functions and identifies a class of
contracts that achieve implementation for all admissible K. In particular, a function
is implementable if and only if it is IR-Dominant. Fix a type 6 and suppose both 7~
and 7~y indicate that any outcome dominated by x (according to 6) is also domi-
nated by the outside option for type 6'. Then, IR-Dominance requires the outcome
from truthfully reporting type 6 to be at least as good as x. Theorem 2 establishes
that IR-Dominance is a necessary condition for implementability, as well as a par-
tial converse: there exists an integer K > 1 such that any nontrivial, IR-Dominant
function is implementable if and only if K < K.? Implementation of such an f for
all K < K is achieved by a particular contract, denoted Cy. Since it achieves imple-
mentation for all admissible K, C,is optimal from the principal’s perspective: if C,
does not implement f; neither does any other contract.

Informally, C; is the result of a simple design heuristic: minimize the informa-
tiveness of each clause subject to the constraint that each clause makes truthful
reporting appear optimal. Consequently, C; satisfies many robustness criteria. For
example, one may introduce randomness, impatience, or costs and benefits of rea-
soning (thereby endogenizing K) without severely undermining the effectiveness of
the contract. I discuss these (and other) robustness properties in Sections II and III.
Section IIC conducts comparative static exercises and shows, for example, that the
principal can implement any IR-Dominant function for any ability K by expanding
the set of actions (messages) available to the agent. Combined, these results for-
mally establish a robust incentive for designers to introduce excess (but constrained)
complexity into contracts.

Before proceeding to the model, a few comments on related literature are in order
(I defer most of the discussion to Section IV). This paper is part of the emerging
literature on behavioral mechanism design. Most of this literature involves agents

2Informally, a nontrivial function fis one that would induce some type to misreport (or not participate) if the
agent understood that the true outcome were governed by f.
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who understand game forms and mechanisms but exhibit nonstandard choice behav-
ior (reference dependence, present bias, etc.) or limited strategic reasoning (e.g.,
level-k reasoning in games). In contrast, I focus on how cognitive limitations affect
the agent’s understanding of the mechanism itself.” The cognitive limitation is mod-
eled as a sensitivity to the way mechanisms are framed, and is quite distinct from
imperfect strategic reasoning (e.g., level-k) because it only affects the agent’s per-
ception of the game form. In this sense, my model is most similar to that of Glazer
and Rubinstein (2012)—henceforth, GR—which studies persuasion with bound-
edly rational agents. There are several important differences between this paper
and GR. Most notably, our models of bounded rationality have distinct formal and
conceptual underpinnings, capturing different ideas of what it means to be bound-
edly rational. The mechanism design problems are also different: GR focuses on
persuasion, while I consider a general implementation problem with type-dependent
preferences and outside options. Consequently, our models yield rather different
insights. I elaborate on this, as well as other related literature, in Section IV.

I. Model
A. Outcomes, Types, Contracts

There is a single principal and a single agent. Let © denote a finite set of agent
types and X a finite set of outcomes. An agent of type § € © has complete and
transitive preferences 7~y over X and an outside option X, € X. Letuy: X — Rbe
a utility function representing 7~y and X := ()?9) gco denote the full profile of outside
options.

Given a finite set A of actions, amechanismis afunctiong : A — X.Let G denote
the set of all mechanisms. Under mechanism g, an agent who takes action a € A
receives outcome g(a).

A clause is anonempty set C of mechanisms. The interpretation of a clause is that it
describes a property of a mechanism. For example, the clause C = {g € G: g(a3)
€ {xz,x7}} may be represented by the statement “the outcome associated with
action as is either x, or x;.”

A contract is a set C of clauses such that () c<¢C is a singleton; let g € G denote
the sole member of this intersection. Much like a real-world contract, C is a collec-
tion of statements (clauses), each describing various contingencies of a mechanism.
Formally, each clause C € Cindicates that g € C. The requirement that () cccC is
a singleton ensures the contract is not ambiguous: only one mechanism, g, satisfies
all clauses of C. This is a standard assumption in mechanism design, and ensures
the contract is enforceable. Finally, note that contracts are defined as sets (not
sequences) of clauses because the agent’s cognitive procedure, described below,
would not depend on the ordering of clauses even if one were specified.’

3The general framework of mechanism design can accommodate uncertainty about the rules of the game (via
appropriate type spaces), but the literature has generally assumed common knowledge of game forms.

#Naturally, there are many different ways of representing a set C in formal or natural language, some of which
may be more complicated than others. I do not assume the agent’s comprehension of a clause is independent of its
presentation, but rather that the principal has sufficient expressive power to convey clauses as separate statements
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B. Timing

First, the principal announces (and commits to) a contract C defining some mech-
anism gc. The agent observes C, processes its clauses and arrives at beliefs in the
form of a correspondence from A to X: an approximation to the true mechanism ge.
The precise manner in which the agent forms beliefs is described in the next section.
Given these beliefs, the agent decides whether to participate in the mechanism. If
he does not participate, he consumes his outside option. If he participates and takes
actiona € A, he receives outcome gc(a), the outcome actually prescribed by C.

C. The Agent’s Cognitive Process

The agent has both imperfect memory and limited deductive (computational)
ability. Memory is represented by a set of feasible belief states, and computational
ability by an integer K indicating how many clauses he can combine at a time.
Presented with a contract, the agent transitions among belief states as he processes
its clauses, gradually refining his beliefs until further improvement requires the
combination of more than K clauses.

Formally, a belief is a nonempty-valued correspondence b : A = X. An agent
with beliefs b has narrowed the possibilities for go(a) down to the set b(a). A belief b
may be represented by the set B” := {g € G|Va, g(a) € b(a)} of all mechanisms
contained in b. Let 3 denote the family of all such sets B”. Each B € Bis a belief
state. Clearly, there is a one-to-one mapping between belief correspondences and
belief states. Given a belief state B, let b denote the associated correspondence.”

An integer K > 1 represents the agent’s deductive (computational) ability. The
agent can combine up to K clauses at a time in order to transition among belief
states, starting from the state B = G. The next definitions formalize the process.
For any finite set S, let |S| denote the cardinality of S.

DEFINITION 1 (K-Validity): Let C be a contract and K > 1. A transition,

denoted B < B', consists of an (ordered) pair of states B,B" € B and a nonempty
subcontract C' C C. If|C'| < K, and

(1) BN (CDC,C> C B,

then the transition is K-valid.

The idea of Definition 1 is as follows. In state B, the agent believes g, € B. If at
most K clauses belong to C’, then the agent has sufficient computational ability to
combine them, revealing g0 € [)cec’C. Then, by (1), the agent deduces go € B'.

in a way the agent understands. As we shall see, “optimal” contracts are robust to the possibility that the agent fails
to process some (even most) clauses.

3 Since beliefs are represented by correspondences, the agent’s beliefs indicate the possible outcome(s) associ-
ated with each action, but not any “correlations” between the outcomes of different actions. I relax this assumption
in Section IIIC.
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Thus, the agent is capable of transitioning from state B to B’ by processing C" and
combining the result with beliefs B.

DEFINITION 2 (K-Reachability): Let C be a contract and K > 1. A state B € B
is K-reachable if there is a sequence

1 2 3 n
G=B S B &S . S p—p

of K-valid transitions.

Definition 2, like Definition 1, is a statement about the deductive capabilities of
the agent. A state B is K-reachable if an agent with no initial knowledge of g, can
deduce, through a series of K-valid transitions, that g» € B. Importantly, the deduc-
tion is sound: g actually belongs to B if B is K-reachable. Thus, in K-reachable states,
the agent does not erroneously eliminate the true mechanism from consideration.

DEFINITION 3 (Induced Belief State): Ler C be a contract and K > 1. A
state B € B is an induced belief state if it is K-reachable and there is no K-valid

.. c’
transition B — B’ such that B C B.

An induced belief state is a state B that is reachable but unrefinable by an agent
of ability K: upon reaching state B, there are no K-valid transitions to strictly finer
states. Thus, induced belief states are those where the agent gets “stuck.” Importantly,
induced belief states are unique.

LEMMA 1: For every contract C and ability K > 1, there exists a unique induced
belief state.

Given a contract C and an integer K > 1, let B ¢ denote the unique induced belief
state. The associated correspondence, denoted bg ¢, is the induced belief. These are
the beliefs the agent forms about the mechanism g before deciding whether to par-
ticipate and, if so, which action to take.

The concept of induced beliefs captures the idea that the agent, starting from
state G, repeatedly processes clauses and performs transitions until he is unable
to further refine his beliefs. Since induced beliefs are unique, the procedure is
path-independent: there is no possibility of getting stuck in a state other than B,
and therefore the order in which transitions are performed does not matter. As shown
in the Appendix, uniqueness follows from the fact that if B and B’ are K-reachable,
then so is B N B'. Hence, B ( is the intersection of all K-reachable states and, in fact,
the finest K-reachable belief state: By C B for all K-reachable states B.f

If the agent fails to deduce g (that is, if Bx, # {gc}), then, from his perspective,
the contract is ambiguous: there are actions @ € A such that bK,C(a) contains two

6One may equivalently define B ¢ to be the (unique) K-reachable state B* such that B* C B for all K-reachable
states B. I am grateful to an anonymous referee for suggesting the present formulation.
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or more outcomes. To close the model, an assumption regarding the agent’s attitude
toward such (perceived) ambiguity is required.

ASSUMPTION 1 (Ambiguity Aversion): Given a contract C, an agent of ability K
and type 0 evaluates actions a € A by the formula

Ug((l,K,C) = min ug(x)

x€bgc(a)

= min u(g(a)).

and participates if and only if max, Ug(Cl,K, C) > ue()?g).

That is, the agent adopts a worst-case (maxmin) criterion when evaluating actions
under beliefs bk ¢. This is an extreme degree of ambiguity aversion, but many insights
generated by the model hold under alternative assumptions: see Section IIIA."

I conclude this section with an explicit example of a contract and an illustration
of the cognitive procedure. Variations of this example will be used throughout the

paper.

Example 1: A manager is recruiting an employee to work on a new project. The
project involves several possible tasks (numbered 1 to 6) and employee types indi-
cate their interest level in the project (Low or High). A (direct) mechanism consists
of a pair of numbers (L, H) indicating the task number assigned based on the type
report. Thus, A = © = {L, H} and X = {1, .. .,6}. Consider the contract consist-
ing of the following five clauses:

C, : Exactly one type receives an even-numbered task.
C,: If H is even, then L is even.

Cs: L+ Hiseither 3,7, or 11.

Cy:IfL > 50orH < 2,thenL > 3and H < 4.

Cs:If L > 5SorH > 4,thenL > 3and H > 2.

An agent of ability K > 2 can combine C; and C, to deduce that H is odd and L
is even. Hence, such agents can transition to state B where bt (L) = {2,4,6} and
b®(H) = {1,3,5}. Further refinement of these beliefs requires K > 3 because
no pair of clauses eliminates any outcomes from this correspondence.® Only by
combining C3, Cy, and Cs (simultaneously) with B can a new belief correspondence

7In this setup, ambiguity aversion can be interpreted as the attitude of an agent who is aware of his cognitive
limitation and skeptical of the principal’s motives: the fact that he cannot pin down the true mechanism raises sus-
picion that the principal is trying to deceive him. Only the worst-case criterion protects agents from bad outcomes
(those dominated by their outside options). Thus, in the presence of potential manipulators, the worst-case criterion
may be an advantageous heuristic for cognitively constrained individuals.

8 For example, {(6, 1),(4,3),(2, 5)} C C3N Cy, so that no even number is eliminated for L and no odd number
is eliminated for H even after combining C3 and C, with beliefs B. A similar property holds for all other pairs of
clauses.
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be reached. In fact, performing this calculation reveals the true mechanism. Thus,
ability K > 3deduces (L,H) = (4,3),K = 2remainsinstate Babove,andK = 1
learns nothing.

I1. Implementation via Complex Contracts
A. K-Implementation

The principal seeks to implement a function f: ® — X specifying an outcome
for each type. To do so, she designs a contract that K-implements f.

DEFINITION 4 (K-Implementation): Let K > 1. A contract, C, K-implements the
function f if there is a profile (ag)ge@ of actions such that, forall € © anda’ € A,

(i) Up(agK.C) > Uy(a',K,C) (Incentive Compatibility),
(ii) Uplap. K,C) > uy(Xy) (Individual Rationality), and

(iii) gc(ag) = f(6).

A function fis K-implementable if there exists a contract that K-implements f. If f
is K-implementable for some K, then f is implementable.

A contract C implements f by inducing beliefs that make each type 6 wish to
participate (Individual Rationality) and take a recommended action a4 (Incentive
Compatibility) such that gc(ag) = f(6). Thus, type 6 is led to believe that a, is an
optimal response even though he may prefer a different action if he could deduce
the true mechanism g¢. Since induced beliefs depend on K, a contract that K-imple-
ments f need not achieve implementation for other abilities K. However, as we shall
see, it will be without loss to consider a class of contracts that K-implement a given
function for all K up to some bound.

As is typical in mechanism design, I focus on direct mechanisms. A contract is
direct it A = ©. If C is direct and the profile ay := 0 satisfies all requirements of
Definition 4, then C directly K-implements f. That is, to achieve direct implementa-
tion, a contract must induce beliefs making truthful reporting appear optimal for all
types. Note that, for direct contracts, the IC and IR conditions depend only on the
induced belief correspondence; that is, beliefs b - make agents of all types prefer
to participate and report truthfully. Arbitrary correspondences b (or their associated
belief states) will be called incentive-compatible if they satisfy these conditions.
The restriction to direct contracts is justified by the following result.

THEOREM 1 (A Revelation Principle): If a function is implementable, then it is
implementable by a direct contract.

Like the standard revelation principle, Theorem 1 simplifies the search for imple-
mentable functions by restricting attention to direct contracts. Importantly, Theorem 1
is silent regarding the range of K for which implementation is achieved. As shown in
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Section IIIC, this range increases as the action space expands. Thus, the only loss in
restricting attention to direct contracts is to limit the range of K for which implemen-
tation can be achieved; the set of implementable functions is not affected.

If the agent is fully rational, then a function f is implementable if and only if it
is trivial: for all 6,0" € ©, f{0) o f(0') and f(#) ¢ ¥, The goal is to determine

when and how nontrivial functions can be implemented for boundedly rational agents.

Example 2: This is similar to Example 1, but with three types and four tasks.
Thus,A = © = {L,M,H} and X = {1,2,3,4}. Preferences are given by the fol-
lowing table (ordering best to worst for each 7Z):

)

4 3
M 1 3
T H 3 1

Types L and M have outside option 3 and H has no outside option (equiva-
lently, x5 = 4, his least-preferred outcome). Suppose the agent is fully rational, so
that for any contract he deduces f (condition (iii) of Definition 4). Let f; denote f(6)
and write f = (fL.finfu). Then f1 = (4,1,3) is trivial; f* = (2,2,2) violates IR;
and f> = (4,3,1) and f* = (4,3,2) satisfy IR but not IC. As we shall see, with
boundedly rational agents, /! and > are implementable but £ and f* are not.

The next definition provides a condition fully characterizing the set of imple-
mentable functions. For each § € © and x € X, let Ly(x) == {y € X:x =y}
denote the strict lower contour of x under preferences 7.

DEFINITION 5 (IR-Dominance): A function, f, is IR-Dominant if, for all 0,6 € ©
and all x € X, f0) Zgx if Ly(Xy) D Ly(x). Let D(X) denote the set of all
IR-Dominant functions.

IR-Dominance requires type 6 to prefer f (0) over x whenever 77, and some other
=y indicate that any outcome dominated by x (according to 77) is also dominated
by Xy, the outside option for ¢". Intuitively, IR-Dominance expresses two necessary
conditions for the existence of incentive-compatible beliefs. First, the worst-case
outcome from truthful reporting must be at least as attractive as the outside option.
Second, if satisfying the first condition makes type 6 expect a worst-case outcome
at least as good as x from misreporting as ¢’, then f(9) must be even more attractive
than x. In addition to characterizing the set of implementable functions, the concept
of IR-Dominance is used to define the following class of contracts.

DEFINITION 6 (Complex Contract): Let f € D(X). The (direct) contract Cy
defined by

¢ = {D()\(g}:s € D(x) and g # /)

is the complex contract for f.
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Each clause of C;is formed by taking the set D()?) and removing a single mech-
anism g € D(X); cycling through all choices of g # fyields Cy. Thus, each clause
allows the agent to deduce that f is IR-Dominant, but provides only slightly more
information by ruling out a single IR-Dominant function. This maximizes the num-
ber of clauses that must be combined in order to improve upon the knowledge that f
is IR-Dominant.

As shown in Section IIB, the set D(X) qualifies as an incentive-compatible belief
state: beliefs B = D(X) make every type ¢ wish to participate and respond truth-
fully. Thus, C;can be interpreted as the result of a simple design heuristic: minimize
the informativeness of each clause (thereby maximizing the difficulty of perform-
ing transitions) subject to the constraint that each clause makes truthful reporting
appear optimal.

THEOREM 2: If a function is implementable, then it is IR-Dominant.
Moreover, there exists an integer K such that any nontrivial, IR-Dominant func-
tion f is directly K-implementable if and only if K < K; in particular, Cy directly
K-implements f for all K < K.

Theorem 2, the main result of this paper, establishes that IR-Dominance is
necessary and (almost) sufficient for K-implementability: a nontrivial function
is K-implementable if and only if it is IR-Dominant and K < K. Moreover, the
contract Crachieves implementation for all K < K, making it an “optimal” contract
from the principal’s perspective: if C;does not K-implement f, neither does any other
contract. Thus, a sophisticated principal has a strong incentive to introduce excess
(but constrained) complexity into contracts.

The contract C; exhibits a high degree of robustness not only to variation
in K, but to variations on the cognitive procedure itself. This holds because
(i) successful processing of any clause C € C, will transition the agent to the
(incentive-compatible) state D(X), and (ii) even from state D(X), at least K
clauses must be combined to reach a finer state. This makes state D()?) easy
to reach but difficult to escape, so that implementation is likely to be achieved
even if the agent’s cognitive process deviates from the specific model intro-
duced here. For example, the agent need not perform multiple rounds of transi-
tions or even understand all clauses of C: randomly selecting any set of at most
K — 1 clauses for processing would result in beliefs D_()?) As long as the agent
successfully processes at least one clause (but never K or more at once), imple-
mentation will be achieved. For additional extensions and robustness results, see
Section III.

B. An Illustration

This section provides a sketch of the proof of Theorem 2 and also derives an
explicit formula for the bound K. For concreteness, the analysis is developed in the
context of Example 2.

Two steps are needed to implement a nontrivial function f. The first is to derive
an incentive-compatible belief state B, and the second is to construct a contract C
inducing those beliefs. The contract must satisfy g = f, forcing f € B.



1254 THE AMERICAN ECONOMIC REVIEW MAY 2020

Panel A. L,(xy) removed Panel B. D(x)

L M H L M H

FIGURE 2. CONSTRUCTING D()?)

It turns out that every incentive-compatible B is a subset of D(¥), and that D(¥)
itself is an incentive-compatible belief state. It follows that IR-Dominance is a nec-
essary condition for implementability, because if C K-implements f by inducing
beliefs By, = B,thenf = g € B C D(X).

The derivation of D(X) is illustrated inusing the framework and pref-
erences of Example 2. The idea is to construct a maximal incentive-compatible
correspondence, b*, in two steps. First, in order for a correspondence to be
incentive-compatible, it must satisfy the IR constraint. In panel A, outcomes strictly
dominated by Xy (according to preferences —,) are eliminated as possible conse-
quences of reporting 6. This makes the correspondence satisfy IR, but it violates IC:
type H would prefer to misreport as type M. Therefore, in panel B, outcomes 2 and
4 are removed as possible consequences of report H, the minimal change needed
to satisfy IC. By the maxmin criterion, IR is still satisfied. It is then a straight-
forward exercise to verify that D(f) consists of all functions contained in b*. In
this case, D(X) is represented by the correspondence »* where b*(L) = {3,4} and
b*(M) = b*(L) = {1,3}, as illustrated in panel B of Figure 2.

Now let f € D(x) and consider C,. Every clause of Cyis a subset of D(X), and
therefore the agent can reach state D (X) by processing any clause. In order to reach a
finer belief state, the agent must eliminate some outcome as a possible consequence
of some action. This requires eliminating all functions in D(X) passing through
a particular point of the correspondence. For example, to eliminate 4 as a possi-
ble consequence of report L, the agent must eliminate the 2 -+ 2 = 4 functions in
D(X) passing through the point (L,4). This requires K > 4 since each clause of Cr
eliminates only a single function.

A simple induction argument establishes that if the agent is sophisticated
enough to perform one such elimination, then he is sophisticated enough to deduce
(through a series of K-valid transitions) the true mechanism g; = f. Thus, Cyhas a
“bang-bang” nature: the agent either deduces f or remains stuck in state D(¥).
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How sophisticated must the agent be in order to perform an elimination? Observe
that the level K needed to eliminate the point (G,x) from the correspondence b*
is [Tg20|b7(0")], because this is the number of functions in D(¥) passing through
(6,x). Thus, the minimum level K needed to refine b* is

(2) K = %iggge\b*(e/)

bl

which is the sought-after formula for K. An agent with K < K will end up in
belief state D(X), while K > K deduces the true mechanism go = f. Thus, if fis
nontrivial and K > K, C; fails to K-implement f. As shown in the Appendix, this
implies no contract can K-implement f. Roughly, this follows from the fact that (i)
any implementing contract must induce incentive-compatible beliefs B C D()?),
and (ii) C; maximizes the level K need to refine beliefs D(X). Thus, if some con-
tract K-implements f, so must C.

To conclude this section, the following example provides some additional insight
into the structure of Cy.

Example 3 (Continued from Example 2): Let X = {1,2,3,4} and A = O
= {L,M,H}. Preferences and outside options are as in Example 2.
Consider the contract, C, consisting of the following eight clauses:

Co: M and H are odd, and L > 3. Cy:IfM = H = 3,thenL = 4.
Ci:L+M+H < 10. Cs:IfL = M,then H = 3.
C,:IfM+H = L,then H = 1. Co:If L = H,then M = 3.
C;:IfM = H = 1,then L = 3. C;:L+M+H > 5.

Clause C, yields beliefs B where b%(L) = {3,4} and b%(M) = b%(H) = {1,3},
as in panel B of Figure 2. Thus, beliefs B coincide with D(X) and are incentive
compatible. Only ability K > 4 can refine these beliefs. In particular, combin-
ing clauses C4—C; with B reveals L = 4. From B, one could alternatively com-
bine C,, C3, Cg, and C; to deduce M = 3, or Cy, C3, Cy4, and Cg to deduce H = 1.
No other combinations of four or fewer clauses allow any outcomes to be eliminated
from the correspondence b8 Thus, ability K > 4 deduces f = (4, 3, 1) while abil-
ities 1 < K < 3 remain stuck in state B. Since f is not trivial, implementation is
achieved only for K < 3 (thatis, K = 4).

This contract is equivalent to C; in terms of induced beliefs (bxc = bg ¢, for
all K) but is not actually Cy. To construct C, replace C; (i = 1,...,7) with Cy N C;.
Essentially, this appends the statement “L € {3,4} and M,H € {1,3}" to each C..
Thus, in Cf, every single clause allows the agent to transition to state B = D()?),
whereas in C the agent must process C, in order to reach B.
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This example also illustrates another dimension along which Cyis robust: not only
is K > 4 required to refine beliefs D(X), but only three of the (Z) = 35 sets of four
clauses enable transitions to finer states. Thus, even an agent of ability K = 4 will
get stuck in D(¥) if he is not patient enough to examine most combinations of four
clauses from C.

C. Comparative Statics

The analysis so far has fixed the profile X of outside options and (by Theorem 1)
restricted attention to direct mechanisms (A = ©). In this section, I show how the
set of implementable functions and the bound K vary with X and the choice of action
space A.

Outside Options.—Both the set of implementable functions D(x) and the bound
K vary with the profile ¥ of outside options. In this section only, I will write K(X) to
emphasize this dependency. The following result is a straightforward consequence
of (the proof of) Theorem 2.

PROPOSITION 1: If X 7y X forall 0, then D(X') C D(X) and K(X') < K(X).

In other words, the set of implementable functions shrinks and K decreases as
outside options become more attractive for all types. Intuitively, this follows from
formula (2) for K(X) and the fact that better outside options shrink the correspon-
dence b* associated with D(X) (with better outside options, more outcomes must be
eliminated in order to satisfy IR).

An interesting special case is when each X is the worst-possible outcome in X for
type 0; that is, it is as if types do not have outside options at all. Then D(X) = G,s0
that every function is implementable and K(¥) = |X| 1= This case still requires
the full proof to establish both implementability as well as the optimality of complex
contracts.’

Larger Action Sets—By Theorem 1, the choice of action space A does not affect
the set of implementable functions. However, the range of K for which a function
can be implemented depends on A. In this section, I show that K increases as |A|
increases. Throughout, I assume |[A| > |O)].

Let f € D(X). The definition of C; can be adapted to the action space A as
follows. First, relabel elements to express A as a (disjoint) union A = O UA".
Let b*:© =3 X denote the correspondence associated with D(X). Extend this to
a correspondence from A to X by letting b*(a) = Xforalla € A\©. Now choose
any extension f* of fto the domain A. Let D(X) = {g € G:gle € D(X)} be the
set of functions g:A — X that restrict to functions in D()?) on the domain O, and
consider the contract

Cf = {DA(X)\{g}:g € D*X)and g # fA}.

9Note that this case involves induced beliefs making the agent believe (via the maxmin criterion) that he will
receive the worst-possible outcome of X by participating in the mechanism. If X contains extreme outcomes (e.g.,
large fines), then the agent likely has a more attractive outside option.
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This is analogous to the contract C, where clauses are of the form D(x)\{g}
for g # f. By Theorems 1 and 2, IR-Dominance is a necessary condition for imple-
mentability (even with arbitrary action sets A). The next result, like Theorem 2,
establishes a partial converse.

PROPOSITION 2: Suppose |A| > |©| and that f € D(X) is nontrivial. The con-
tract Cj} K-implements ffor all K < K*, where

K= %Eaga]b*(a/)].

The logic of Proposition 2 is similar to that of Theorem 1. If K < K*, the agent
gets stuck in belief state DA()E); if K > K*, he deduces the true mechanism. Beliefs
DA(X) are incentive-compatible because (under the relabeling) actions a € A’ are
completely ambiguous and, hence, weakly dominated by actions a € © (where
outcomes coincide with those of »*). Thus, implementation is achieved only
for K < K" if fis nontrivial.

Note that K is strictly increasing in the cardinality of A, so that (in the
limit) only IR-Dominance matters. This suggests the principal may wish to inflate A
indefinitely, thereby achieving implementation for any K she desires. In practice, the
principal may be constrained by language needed to describe mechanisms or clauses
on larger action spaces.

III. Extensions, Variations, and Robustness
A. Ambiguity Attitude

In this section, I show how to examine the model under alternative assumptions
regarding the agent’s attitude toward ambiguity or, more generally, under alternative
assumptions about how the agent evaluates belief correspondences.

The procedure for forming beliefs by is independent of how the agent ranks
actions (type reports) under those beliefs. Therefore, solving the model under alter-
native ambiguity assumptions requires two steps:

(i) Given a function f; find a belief correspondence, b, such that f € B’ and b
satisfies appropriate IR and IC conditions under the alternative ambiguity
assumption. If no such b exists, f cannot be implemented.

(ii) The contract
¢t = {B"\{g}:g € B" andg # f}
implements ffor all K < K” := minyq [To20l6(6)].
This procedure accommodates many different modeling assumptions, including
some that do not necessarily regard the multi-valuedness of by ¢ as stemming from

ambiguity. For example, one could assume the agent holds a prior on G which is
updated (via Bayes’ rule) to a posterior on B after processing C. This way, the



1258 THE AMERICAN ECONOMIC REVIEW MAY 2020

agent assigns an expected utility to each action, and appropriate IR and IC con-
straints can be defined.

To maximize the range of K for which implementation can be achieved, choose a
correspondence b from step (i) that maximizes K”. For maxmin agents, this is done
by taking b = b* where B® = D(x). Different assumptions generally require dif-
ferent choices of b and, unlike the maxmin case, this choice may also depend on f.
Thus, ambiguity attitude determines the set of implementable functions, but the con-
tract C fl-’ satisfies robustness and comparative static properties similar to those of C.

Although Cyis derived under the assumption of maxmin preferences, it turns out to
be robust to a wide range of ambiguity attitudes; in particular, those parametrized by
the Hurwicz (1951) a-criterion. Under this criterion, an agent with parameter « €
[O, 1], utility function uy, and beliefs b assigns utility U (‘,’(a) to action a, where

(67 — 1 1 _ .
(3) Uj(a) o min ug(x) + (1 — o) max ug(x)
At o = 1, the agent is maxmin; at « = 0, he is “maxmax” (he behaves as if the
best possible outcome in b(a) will attain). In general, cardinal properties of uy affect
the agent’s behavior under this criterion. Nonetheless, C;still implements f* € D(f)
foralK < Kandall o € [O, 1}.

PROPOSITION 3: If f is IR-Dominant and the agent has o-maxmin preferences,
then Cyimplements f for all K < K.

Note that, for a given value of «, the set of implementable functions (or the
range of admissible K) may expand. Rather than a complete characterization (which
would depend on « as well as cardinal properties of the functions ug), Proposition
3 should be understood as a robustness result: a principal who is uncertain about
the agent’s ambiguity attitude (but believes preferences are a-maxmin for some
unknown «) can implement an IR-Dominant function for all K < K by choosing Cr

B. Endogenous K

In the baseline version of the model, the parameter K is a fixed attribute of the
agent. In this section, I consider the possibility that K may respond to incentives.
In particular, the agent may wish to acquire a higher ability K if doing so results in
sharper beliefs and, hence, greater ability to manipulate the mechanism.

To attain ability K, the agent suffers a cost ¢(K), where c is strictly increasing
and satisfies ¢(1) = 0. One may interpret c¢(K) as a cost (psychological or other-
wise) of computational effort. Given c, the principal seeks to design a contract that
c-implements her objective.

DEFINITION 7: Let ¢ be a cost function. A contract, C, (directly) c-implements a
function f if there exists K* such that, for all 0

K* ¢ ar%rznlax g)eag UQ(Q/, K, C) — c(K),

and for all 6,60 € O,
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(i) Ug(0,K*,C) — c(K*) > uy(%y),
(i) Uy(6,K*,C) > Uy(0',K*,C), and
(iii) gc(0) = f(6)-
A function f is c-implementable if there exists a contract that c-implements f.

Under c-implementation, an agent of type 6 weighs the (anticipated) bene-
fit maxgcq Uy(0', K,C) of participating in the mechanism under beliefs B ¢ against
the cost ¢(K) of acquiring ability K.'® For implementation to be achieved, an
agent-optimal ability K* must induce beliefs that satisfy the IR and IC constraints.
For each 6 and f, let u’g(f) = MaXgeco ug(f(ﬁ’)).

PROPOSITION 4: If f is c-implementable, then f is IR-Dominant. If f is nontriv-
ial and IR-Dominant, then C; c-implements f if maxgee u(f) — mingeD(;) ug(g(ﬁ))
< ¢(K).

Proposition 4 establishes that IR-Dominance remains necessary and (almost) suf-
ficient for implementability. The condition for C; to be effective says that, for each
type 0, the net payoff from acquiring ability K and perfectly manipulating the mech-
anism (uj(f) — ¢(K)) does not exceed the payoff from choosing K = 1 and ending
up with (anticipated) payoff U@(G,K = I,Cf) = MiNgepx) ug(g(9)>. Intuitively, this
is the relevant comparison because Crinduces beliefs Q(i forall K < K. Since cis
strictly increasing, this means only K = 1 or K = K can be optimal for the agent.
Thus, the condition ensures that Cyachieves implementation as long as each type of
agent prefers K = 1 over K, given c.

C. Finer Belief States

So far, the analysis has allowed variation in K but fixed the family B of belief
states. In particular, a set B C G belongs to 3 if and only if there is a correspon-
dence b such that B = B’. In this section, I consider more general families of
beliefs, defined as follows.

DEFINITION 8 (Belief System): A belief system is a family B of subsets of G such
that

Bl. everyB € Bis nonempty;
B2. ifB,B' € Band B N B # @, thenBNB' € B;

B3. ifB € B,thenB € B.

19This assumes the agent correctly assesses the benefit from choosing K before acquiring that ability. The “cir-
cularity” of this approach has obvious conceptual drawbacks. Nonetheless, correct forecasting of this sort seems to
be a natural benchmark. For more on costs and benefits of reasoning, see Alaoui and Penta (2016a, b).
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Property B1 states that belief states are nonempty sets of mechanisms. Property B2
states that if the agent can recall that a mechanism satisfies one property, and also
recall that it satisfies a second, then he can recall that it satisfies both properties.
Finally, B3 states that the agent is able to recall the set of possible outcomes associ-
ated with each action. It is easy to see that I3 satisfies all three properties.

Some additional terminology is needed to define the cognitive procedure for arbi-
trary belief systems. A cognitive fype is a pair T = (K, B) where K > 1 is an
integer and B is a belief system. If 7" = (K/,B/), then 7" < Tmeans K’ < K and
B’ C B. Thus, type T is more sophisticated in that he has both greater computa-
tional ability and a richer set of belief states than type 7".

For any type T = (K, B), the definitions of K-validity and K-reachability can
be adapted from Definitions 1 and 2 by replacing 5 with B. Call the resulting con-
cepts T-validity and T-reachability, respectively. Given these definitions, the con-
cept of induced belief states (Definition 3) can be adapted as well. Properties B1
and B2 ensure Lemma 1 holds for arbitrary 7 (see the Appendix). Thus, given a
contract C, there is a unique induced belief state, denoted Byc. The effective belief
state, denoted B7 ¢, is the smallest member of B containing Br.. Hence, the effective
belief state is associated with a correspondence b7 given by

Tela) = {g(a):g € B*T,C} = {g(a):g € BT’C}.

The idea of an effective belief state is that if the agent has arrived in state By and
if ¢ € By, then he considers g(a) to be a possible consequence of action a. Thus,
it is as if his beliefs are represented by b7 and, hence, the state By, € B.

Once again, an agent of cognitive type 7" evaluates his belief by the maxmin cri-
terion. This is equivalent to evaluating his effective belief by the maxmin criterion.
Hence, the definition of K-implementability can be extended to 7-implementability
in the obvious way. For ease of exposition, I restrict attention to direct contracts
(A = 0).

Given a contract C, a cognitive type 7, and a function f € B, let

Cry = {B7c\g}:g € Bic.g # [}

This is similar to the complex contract Cp, but replaces D(X) with B.. Each
clause indicates that f € B, but eliminates only one function from B7.

PROPOSITION 5: If a contract, C, T-implements a function f, then fis IR-Dominant
and Cy s T-implements f for all T" < T.

The logic of Proposition 5 is similar to that of Theorem 2. For a function to
be implementable, it must be contained in an incentive-compatible correspondence
and, hence, IR-Dominant. The main difference is that some choices of 5 may make
the agent highly adept at transitioning away from state D(f), and therefore C; may
fail to implement some IR-Dominant £.'! But if a contract, C, T-implements f by

"n particular, under Cp, the agent may arrive at beliefs B C D(X) that are not incentive compatible.
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inducing (effective) beliefs BT, then Cr,T-implements ffor all 7" < Tbecause Cr,s
maximizes the difficulty of escaping the (incentive-compatible) state B .

IV. Discussion
A. Related Literature

A growing literature on behavioral mechanism design has emerged with the goal
of understanding how various departures from standard rational behavior influence
the design and effectiveness of mechanisms. In one branch, agents understand game
forms and mechanisms but exhibit nonstandard choice or strategic behavior. For
example, Korpela (2012) and de Clippel (2014) study implementation for agents
with nonstandard choice functions, while de Clippel, Saran, and Serrano (2018)
and Kneeland (2018) study mechanism design for agents with level-k strategic rea-
soning (Stahl and Wilson 1994, 1995)."2 The literature on mechanism design with
ambiguity-averse agents (Gilboa and Schmeidler 1989) also belongs to this cate-
gory. Bose and Renou (2014) argues that a designer cannot benefit from introducing
ambiguity into the allocation rule unless a correspondence (rather than a function)
is to be implemented, and construct a mechanism inducing endogenous ambiguity
about the types of other players. In contrast, my results show that perceived ambi-
guity about the allocation rule can help the designer achieve her goals: the principal
specifies a complete, unambiguous mechanism, but agents misperceive the rule to
be ambiguous, to the principal’s advantage.'”

Another, less-developed branch considers the possibility that agents, inde-
pendently of their strategic reasoning ability or other psychological traits, may not
fully understand mechanisms presented to them. That is, they may hold incorrect or
incomplete beliefs about how action profiles map to outcomes. The main challenge
of this avenue is that it requires new models of bounded rationality indicating how
agents form beliefs or make decisions when confronted with complex mechanisms.
This paper develops such a model based on the idea that the ability to combine dif-
ferent pieces of information (and retain new facts derived in the process) is a key
determinant of problem-solving ability. Consequently, the agent is sensitive to the
way information is framed."

As part of the second branch, this paper is most closely related to a pair of papers
by Glazer and Rubinstein (2012, 2014)—henceforth, GR12/14. These papers study
persuasion with boundedly rational agents: all agents (regardless of type) wish to be
accepted by the principal, but the principal only wants to accept a particular subset
of types. The papers differ in the manner in which agents are bounded as well as the
implementation objective faced by the principal. In GR12, the principal specifies a
set of conditions (each required to take a particular syntactical form) necessary for

12See also Koszegi (2014) for a recent survey of the behavioral contracting literature.

13Di Tillio, Kos, and Messner (2016) shows that a seller can benefit from using an ambiguous mechanism when
buyers are ambiguity averse. For more on mechanism design with ambiguity aversion, see Bodoh-Creed (2012);
Bose, Ozdenoren, and Pape (2006); Bose and Daripa (2009); and Wolitzky (2016).

14Salant and Rubinstein (2008) studies a general model where the framing of alternatives (not information)
influences choice behavior, and Salant and Siegel (2018) applies this framework to a contracting model where a
seller seeks to influence buyers through framing.
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acceptance. The agent, rather than forming beliefs and acting on them, adheres to a
particular algorithm for constructing a response. Crucially, the procedure initializes
at the true type and is defined using the syntactical structure of the conditions. In
GR14, the principal asks the agent a series of questions about his type and agents
have limited ability to detect patterns in the set of acceptable responses. The same
syntactical structure is needed to define the patterns that agents detect. The principal
solves a constrained implementation problem where all truthful, acceptable types
must be accepted while minimizing the probability that manipulators are accepted
(manipulators can lie about their type; truth-tellers cannot). They show that this
probability depends only on the number of acceptable types and that it decreases
very quickly as the set of acceptable types expands.

Like GR12/14, this paper introduces a novel concept of bounded rationality and
applies it in a principal-agent setting. However, the model and results differ in sev-
eral ways. First, I study an implementation problem involving an arbitrary num-
ber of outcomes, heterogeneous preferences, and outside options. The principal’s
implementation objective is standard and is not subject to any particular constraints
on form or content.'> Second, agents in my model are bounded in a different way:
they are limited in their ability to combine different pieces of information, and for
this reason I abstract away from syntactical details of the contracting environment.
Finally, the implementation results presented here are qualitatively different from
those of GR12 and GR14. Implementation is deterministic, and the main results
show that well-crafted complex contracts are robust to a variety of cognitive types
and procedures.

The issue of robustness to nonstandard agent behavior has received some atten-
tion in the literature. Eliaz (2002), for example, considers an implementation setting
where some players are error-prone and the designer seeks a mechanism robust
to this possibility, while Li (2017) proposes an implementation concept robust to
imperfect strategic reasoning in extensive-form games. A key result of this paper
is that when cognitive ability (affecting the agent’s perception of the game form) is
the dimension of interest, strong robustness results emerge “for free”: any goal that
can be achieved through exploitation of limited cognitive ability can be achieved in
a way that is highly robust to heterogeneity in cognitive abilities and procedures.

B. Conclusion

This paper has studied a mechanism design problem involving a principal and
a single, boundedly rational agent. By designing contracts to exploit the agent’s
limited cognitive ability, the principal can implement a large class of objective
functions (those satisfying a simple IR-Dominance condition) provided the agent
is not too sophisticated. Without loss of generality, the principal adheres to a sim-
ple design principle: minimize the informativeness of each clause subject to the
constraint that each clause makes truthful reporting appear optimal. Consequently,
the optimal contract is highly robust to heterogeneity in cognitive ability as well as

151n particular, no syntactical structure is imposed and, like GR12/14, there are no costs associated with design-
ing longer contracts. Introducing such costs, as in Battigalli and Maggi (2002), may be an interesting avenue for
future research.
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several variations on the agent’s cognitive procedure. The analysis is grounded in
a novel framework for bounded rationality where imperfect memory and computa-
tional ability limit the agent’s ability to solve problems.

The model of cognition introduced in this paper is neither formally nor con-
ceptually bound to the domain of implementation theory. It can be reformulated,
for example, as a general model of non-Bayesian information processing. Let ()
denote a set of states and B a family of nonempty subsets of {2 closed under non-
empty intersections. Suppose an agent is presented with a set F = {E], .. .,En}
of events E; C € such that ((zcrE; # @. For example, each E; could represent
the realization of a signal (from a partitional information structure) indicating that
the true state belongs to E;. Alternatively, F could be interpreted as a frame for the
event E = () rerEi (thatis, E is framed as a set of events that jointly pin down E,
similar to the way a contract is a set of clauses pinning down a mechanism). The
family B represents a set of feasible belief states for the agent. For any K > 1, the
cognitive procedure for processing F can be adapted from the general model pre-
sented in Section IIIC, providing an intuitive and portable theory of complexity in
information processing. Further development of this framework and its applications
may be an interesting avenue for future research.

APPENDIX A: PROOFS
A. Preliminaries

This section establishes some basic properties of the cognitive procedure. Since
Proposition 5 utilizes the more general model introduced in Section ITIC, results are
presented for general cognitive types T = (K, B) where B is a belief system satis-
fying properties B1-B3 of Definition 8. Throughout, B denotes the baseline belief
system where B € Bif and only if therg is a correspondence b such that B = B

Given T = (K,B , a transition B — B’ is T-valid (under contract C) if B,B’
€ B,C' C Cwith|C'| < K, and

Bﬂ(ﬂC) C B.

ceC
A state B € Bis T-reachable if there is a sequence
1 2 3 n
6=B S B &S . S p—p
of T-valid transitions. It is easy to see that K-validity and K-reachability (Definitions
1 and 2) are special cases of T-validity and 7-reachability, respectively, where
T = (K.B).
LEMMA A.1: Let C be a contract, T = (K,B), and B,B' € B Then,
(i) ifB S B'is T-validand B' C B" € B, then B S B" is T-valid;

(ii) if B and B' are T-reachable, then BN B' # &. Hence, BN B' € B.
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PROOF: ,

For (i), observe fthat if B € B is T-valid, then BN (NcecC)
C B' C B". Thus, B — B" is T-valid. For (ii), observe that ()cee = {gc}-
Therefore, g¢ € [)cec'C for all nonempty C' C C. Now suppose B is T-reachable.
Then there is a sequence

1 2 3 n
cG=8B"%B Sp% ... Sp—p
of T-valid transitions. If g0 € B' for some i, then gc € B'N ([ cec'C) € B,

so that g € B! Since g € G = BY, it follows that g, € B. Thus, if B and B’
are T-reachable, BN B’ # &. By B2, this implies BN B" € B.1

DEFINITION A.l1: Let C be a contract, T = (K,B), and B,B’ € B such
that B C B. Then B'is T-reachable from B if there exists a sequence

c! c? c? c"
B=B">B' S5B*S ... 5 B" =B

of T-valid transitions where B' C B for all i.

Notice that T-reachability is a special case of Deﬁmtlon A.l (take B = G

for T-reachability). Also, if B'is T-reachable from B and B’ S B"isT- valid, then B”
is T-reachable from B. Thus, if B is T-reachable and B’ is T-reachable from B, then B’
is T-reachable.

LEMMA A.2: IfB,B’ € B are T-reachable, then B N B' is T-reachable from B.

PROOF:
Since B'is T-reachable, there is a sequence
1 2 3 n
G=BSpips. .. Sp_op

of T-valid transitions. Observe that

m(ﬂc)gizom(ﬂc)gél and Bm<mc>g3

cec! cec! cec!
Thus,
m< N C) C BNB.
cec!

It follows that B <> B ﬂB s a T-valid transition (note that BNB' € B by
Lemma A.1). If n = 1, then B' = B’ and there is nothing left to prove.
So, suppose 1. > 1. Proceedmg by induction, suppose 1 < i < n and that
B—>BﬁBl—>BﬁB1 Bzc —>BﬂB1 .- NB" is a sequence of

T-valid transitions. Then

BmBWw---me"m(ﬂc)giz"m(ﬂc)gél’“.
Ceci+l Ceci+l
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Thus,
BNB' n---nBn({NC\CBNBN- - nNB nB*
CECi+1
A [ i+l A .
and BAB'N -~ nB < BNB'N -~ NB*!is a T-valid transition. By induc-

tion, then, B N B'n---NB"is T_—reachable from B (let B' .= BNB'Nn --- NB
for all i = 1,...,n; clearly, B C B for all i). Since B" = B, it follows
that BNB'N --- NB" C BN B, and so BN B'is T-reachable from B by Lemma
A.l.m

LEMMA A.3: For every contract C and type T, there exists a unique induced belief
state By .

PROOF:

Fix C and T and suppose B and B are induced belief states. By Lemma
A.2, BN B is T-reachable from B. Thus, there is a sequence of 7-valid transi-
1 2 3 n R .
tions B = B SRS RS LS = BN B such that B* C B for all i.
ItftBNB C B, thenwthere is a smallest i* > 1 such that B C B. But then the tran-
sition B = B! % BT is T-valid, contradicting the fact that B is an induced belief

state. Thus,B = BN B. A similar argument establishes that B = BNnB. Thus, B =
B, as desired. B

LEMMA A4: Let C be a contract and T = (K,lg’). The state Br. is the
(unique) T-reachable state B* € B such that B* C B for all T-reachable states B.

PROOF:

By Lemma A.2, B N B'is T-reachable whenever B and B’ are T-reachable. Let B
be the intersection of all T-reachable states (this is a finite intersection because
B is finite). By Lemma A.2, B* is T-reachable. By construction, B* C B for
all T-reachable states B. Thus, if some other T-reachable state B’ satisfies B C B
for all T-reachable states B, we have B* C B’ and, therefore, B' = B*. To see
that By = B’ it vcv,ill suffice (by Lemma A.3) to show that B* is an induced belief
state. Suppose B — B'is T-valid. Then B'is T-reachable, forcing B* C B’by defi-
nition of B*. Thus, B* is an induced belief state. B

LEMMA A.S5: If B is T-reachable, then Byc is the intersection of all states
B € B that are T-reachable from B. In particular, Br; is the intersection of
all T-reachable states.

PROOF:

Let B be a T-reachable state. As shown in the proof of Lemma A.4, By is the
intersection of all 7-reachable states. Clearly, this coincides with the intersection
of all sets of the form BN B’ where B’ is T-reachable. To complete the proof, we
show that a state B is T-reachable from B if and only if it is of the form B = BN B’
for some T-reachable B'. If B’ is T-reachable, then (by Lemma A.2), the set BN B’
is T-reachable from B. Conversely, suppose B is T-reachable from B. Then, by
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definition, B C B. Moreover, B is T-reachable because B is T-reachable. Take B’ =
B;thenB = BNAB.1

B. Proof of Theorems 1 and 2

For any ¥ C X and 6 € O, let LH(Y) denote the largest (possibly empty)
strict lower-contour set of 774 contained in Y. That is, there exists x € X such that
Ly(Y) = Ly(x) and, for all x' € X, Ly(x') C Y = Ly(x') C Ly(Y). Clearly, any
two sets Ly(Y), Ly(Y') are ordered by set inclusion.

Let Lj be the largest set of the form Ly(Y) subject to Y = Ly
(Xy) (0" € ©). That is, there exists 6’ such that L} = Lg(Lgr()‘Cgl)) and, for all 6",
L9<L9~()f9~)> C Lj. The set Ly is well defined because there are only finitely many
sets of the form ¥ = Lgr(igf), and contour sets LQ(Y) are linearly ordered by set
inclusion.

Define b*:© = X by b%(f) = X\Lj and let K := mingeg [[o4|0*(6')-
Note that b*(6) # @ for all § because no strict lower contour set contains all of X.
Thus, K > 1.

LEMMA A.6: The set of IR-Dominant functions, D(X), satisfies the following:

(i) D(x) = {f:© — X|V0,f(0) & Lj}. Thus, if A = ©, then D(X)
B e B.

(ii) IfA = © and Bxe = D(X), then the IC and IR constraints are satisfied.

(iii) IfA = O, then any belief state satisfying the IC and IR constraints is a sub-
set of D(X).

(iv) IfK = 1,then every f € D(X) is trivial.

PROOF OF (i):

LetB = {f:© — X|V6, f(0) ¢ Lj}. The claim is that D(X) = B.

ToestablishD(¥) C B,letf € D(x)andf € ©.By definition, thereisa " such
that Lj = Ly(Y) where Y = Lg:(Xy-). Since L} is a strict lower contour of >9, there
isan x* € XsuchthatLj = Lg(x*).Then Lg*(fg*) D) LQ( ) SO thatf( ) g x" by
IR-Dominance. Since x* 4 x forallx € Ly(x*) = Lj, it follows that f(6) & L;.

For the converse inclusion, suppose f € B, 6 € ©, and Ly(Xp) O Ly(x).
Since f € B, we have f(6) ¢ Lj. Therefore, f(6 ) = x' for all x' € Lj because L}
is a lower contour of 7, In particular, f(6) 7y x because Ly(x) C Lyg(Ly(x))
C L@(Lg (xe)) C Lj (the second inclusion holds because Ly(x) C Ly(Xy) and
Ly(Y) C Ly(Y') whenever Y C Y'). Thus,f € D(X).n

PROOF OF (ii):

By (i), we may represent D(X) by the set B = {f 0 — X|V6,f(6) ¢ Lg}
Clearly, this set satisfies the IR condition. For the IC condition, suppose toward
a contradiction that some type 6 strictly prefers to misreport as 6" # 6 under
beliefs B. By the maxmin criterion, this implies Ly C LQ(LE/); that is, Lj contains
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a strictly larger lower contour set of ~~, than Lj. Now, there is a #" such that Ly
= Lg/(Lg*()?@*)) Then Lg*l g Lg*(.fg*), which 1mphes Lg(LZ/) g L@(Le*()?g*)). But
thenLj C Ly(Lj) C Lo(Ly(Xy:)). This contradicts the fact that Lj is the largest set
of the form L, Lgn()?gn)) among all §” € ©. Thus, D(X) satisfies the IC condition as
well. B

PROOF OF (iii):

Suppose B satisfies the IC and IR constraints. Let b denote the associated cor-
respondence, and suppose toward a contradiction that there exists (H,x) € OxX
such that x € b(6) but x ¢ b*(6). Then x € Ly (because x ¢ b*(0) = X\Lj
by part (i)) and x & Ly(Xy) (because x € b(6) C X\Ly(X,) by IR). By definition
of Lj, there exists 6" such that Ly = LQ(LQ*(X()*)). We must have 0% # 0; other-
wise, Lj = Ly(X,), contradicting the fact thatx € Lj\Ly(Xy).

Next, observe thatif y € Ly(Xy-),theny & b(6*)by the IR constraint for type 6*.
Then z ¢ b(0%) for all z € Ly(Ly-(Xy)) C Lg-(Xy:). Thus, under beliefs b, type 6
expects (by the worst-case criterion) an outcome strictly better than x from reporting
as type 0, because x € Ly = L(;(L@*()?@*)) and no element of LQ(LQ*(XH*)) (hence,
no element y 34 x) is a member of b(&*). This contradicts the fact that b satisfies
the IC and IR constraints. &

PROOF OF (iv):

If mingeg [Toz0|07(0')] = 1, then there is a 6* such that [b*(f)] = 1 for
all @ # 0*. By (i), for each § # 0, there is a strict lower contour set Ly such that
b*(#) = X\Ly. Thus, the fact that [p*(f)| = 1 implies that the sole member x of
b*(6) is an optimal outcome for type 6: x; 7=y x forallx € X.Hence, any selection g
from b* has the property thatx, = g(0) 7 g(¢') and g(6) 7y X forall  # 6*and
allf’ € O.

Now consider type 6*. Since b* satisfies the IC and IR constraints (claim (ii)) and
g(0) = g'(f)foralld # H*andg.g’' € D(¥), wehavemin,cp- (g uge(x) > ug*(g(Q)
forall € © and g € D(X). Thus, for every g € D(X), we have g(6") ¢ g(0
for all 6 and g(0*) y- X,-. Hence, every ¢ € D(X) is trivial. 0

LEMMA A.7: For all K, either Bxe = D(X) or Bgg, :_{f}. In particu-
lar, Bk, = D(X) forall K < K, and Bgc, = {f}forall kK > K.

PROOF:

Let K > 1. Observe that D()?) € B is K-reachable under C; because every
C € Cyis asubset ofD()?) and, hence, G {—C}> D(f) is K-valid. Thus, Bge, C D(f)
by Lemma A.5. To prove the first claim of this lemma, it will suffice to show that if
some B € Bsuchthat B C D(%) is K-reachable, then Bx¢, = {f}.

If some B C D(x) is K-reachable, then (by Lemma A.5) B is K-reach-
able from D(X) because D(X) is K-reachable. So, there exist cl,....c" C Cr
andB', ...,B" € Bsuchthat B’ C D()?) foralli > 1 and

1 2 n
G=8"%pB'%S ... S g —p
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is a sequence 0_{ K-valid transitions. Let i* be the smallest i such that B’ C D(x)
andlet B’ = B'. ,

Letting C' = C', it follows from our choice of i* that D(x) Y
is K-valid. Moreover, since B* C D(X), there exists (#,x) € © x X such that x
€ b*(6) but x ¢ bB,( ). That is, every g € B'satisfies g(f) # x. Hence, C' is of
the form C' = { (x )\{g} g € E} for some E containing every ¢’ € D(X) such
that g'() = x. Thus, since |C'| < K,

(4) {s € D(x):4(6) = x}| < K.
Note that (4) holds for every choice of x € b*(6) such that x # gcf(G) because

|{g € D(X) = x}| = [To0lb*(6')|, which does not depend on .
So, supposeb (0) {ng )} = {xl,.. ,xm}. For each x;, let

clx) = {D )\g}: ¢ € D(X)and g(0) = xi}.

Clearly cle.x) C Cy Moreover,

_ 6(9«\‘1) A C((’Jz) C(‘?,X”,) A
D(x) — B' "= ... "= B"
is a sequence of K-valid transitions where, for every i = 1,...,m, B satis-
fies b%(0 (0) = b*(0)\fx,....x;}. The transitions are K-valid because |c(0-)]

\{g € D(x):g(0) = x}|, which does not exceed K by (4).

Notice that every g € B satisfies g(0) = gcf(O). In other words, the fact that
some x € b*(0) (x # gcf(ﬁ)) is eliminated in state B" implies the agent is, in fact,
sophisticated enough to pin down g, f(@) after a series of K-valid transitions.

For each nonempty ©' C ©, let B_g = {g € D(x):V0' € ©,¢g(0)
= gcf(é?)} Clearly B_g: € B, and the argument above shows that B_y is K-reach-
able. To complete the proof, I show that if some B_g with § € ©'is K-reachable,
then so is B_g1,fp) for any 0" € ©\O' This implies that an agent who can eliminate
at least one point from the correspondence »* will actually deduce g.. Since ability
K = mingeg [120|67(0")| is required to eliminate such a point, the second claim of
the lemma follows immediately.

Let0 € ©\O"Ifx' € b*(0) andx’ # g (@), then

{g e Bo:g@)=x} =TI [0°(9)

fee\(O'Lh)

< II |b*(@)\ since § € ©
0cO\9

< K by (4).

It follows that |& (6')

< K for all such x', where

Cl0) = {D )\g}: g € B_g andg(0) —x} C Cr



VOL. 110 NO. 5 JAKOBSEN: A MODEL OF COMPLEX CONTRACTS 1269

Hence, if b*(@’)\{gcf(e’)} = {xi, .. .,x}}, then

PO .1 pow Lo g
Bg — B.g — -+ — B_g

is a sequence of K-valid transitions where B'y € B satisfies bBi@”(Q’)
= b*(0)\{x1, . ...x/}, so that B'y = B_gup) is K-reachable. B

LEMMA A.8: If a function is implementable, then it is IR-Dominant.

PROOQOF:

Suppose a contract, C, K-implements f. Then there is an action profile (ag) pco such
that U,g((lg,K,C) > Ug(a’,K,C) forall # € © and @' € A. Define b:© = X by
b(0) = bgc(ag). Then, by construction, b is incentive-compatible. By part (iii) of
LemmaA.6, then, B® C D(f),whereB” = {g:@ — X|V0, g(0) € b(&)}.Sinoe
A0) = gc(0) € bic(ag) = b(6) for all 6, it follows that fis IR-Dominant. B

PROOF OF THEOREM 1:

Suppose f is implementable. By Lemma A.8, fis IR-Dominant. Therefore, the
contract Cyis well defined and satisfies 8, = J.

Consider an agent of ability K = K > 1, then (by Lemma A.7) w
have By, = D(X). By part (ii) of Lemma A.6, these beliefs satisfy the IR and
IC constralnts If instead K = 1, the agent arrives at belief state B, ¢ = = {f}. By
part (iv) of Lemma A.6, fis trivial. Thus, in each case, By, satlsﬁes IR and IC.
Consequently, fis 1-implementable by C; (a direct contract). B

PROOF OF THEOREM 2:
By Lemma A.8, IR-Dominance is a necessary condition for implementability.
To prove the remaining statements of the theorem, an additional lemma is required.

LEMMA A.9: If a contract, C, directly K-implements a function f, then By C B Ky

PROOF:

Clearly, state D(X) € B i 1s K-reachable under C; for all K (take C' = {C} for
any C € Cyto get that G LA D(X) is K-valid). By part (iii) of Lemma A.6, we
have Bie C D( ) Thus, (_) is K-reachable under C as well. 1 prove that if
B & B’1s K-valid for some B,B" C D(x ) and C' C CpthenthereisaC C Csuch

that B S B is K-valid. This implies that every state that is K-reachable from D(¥)
under Cyis also K—reach%ble from D(X) under C. Then Bxe C By by LemmaA.S.

So, suppose B — B’ is K-valid for some B, B’ C D(x) and
C' C Cp. Then there exists gy, ...,8, € D(X) (where n < K) such that C’

{D X)\{gi}:i = 1,. } C Crand

(5) Bm(ﬂc) C B.

cec’
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Note that gc = f # g; for all i. Thus, for each i = 1, ...,n there exists C i
E C such that g; ¢ C'. Take C = {C’ = 1,. n} and observe that BN C’

( )\{g,} Then,
N ( Cfg@c) — BN (

C BN

1D

WQCD
(D(E)\ed))

:Bm( C)
cec’

—
> ID-

Combined with (5), it follows that

ﬂ(ﬂC)gB’

. ceC
so that B < B'is K-valid. n

To complete the proof of Theorem 2, suppose f is a nontrivial, IR-Dominant
function. We may assume K > 1 (otherwise, by part (iv) of Lemma A.6, f is
trivial). By Lemma A.7, Bxe, = D(¥) forall 1 < K < K. This belief state is
incentive-compatible by part (u) of Lemma A.6, and therefore C; K-implements f
for all K < K. Thus, for nontrivial, IR-Dominant functions, K < K is a sufficient
condition for K-implementability.

To see that K < K is also a necessary condition, suppose a contract C K-imple-
ments f. By Lemma A.9, we have Bxe C Bgc,. If K > K, then (by Lemma
AT) Bge, = {f}, forcing Bxe = {f}. This contradicts the fact that C K-imple-
ments the (nontrivial) function f. Thus, a nontrivial, IR-Dominant function is
(directly) K-implementable if and only if K < K, and Cr achieves K-implementa-
tion for all such K. m

C. Proof of Proposition 1

Observe that if X 7y X, for all 6, then Ly(xp) D Ly(x,) for all 6 and, hence,
Ly is larger under %' than X (for all ¢). By Lemma A.6, it follows that D(x')
C D()?). Thus, if " and b are the belief correspondences associated with D(f’)
and D()?), respectively, then b’(@) C b(@). Therefore,

R(¥) = mip [T6'(0)| < min IT 6(6)| = K().m

007&6 9600#0

D. Proof of Proposition 2

As in Section IIIC, write A = © UA’ (a disjoint union). By construction,
DA(X) is represented by a correspondence b : A = X such that b(a) = X for
alla € A'and b(f) = b*(f) for § € O, where b* is the correspondence associ-
ated with D(x). By the maxmin criterion, we may restrict attention to actions in the
set ©. By Lemma A.6, then, beliefs » make truthful reporting optimal for all types.
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Since each C € C# ¢ 1s a subset of DA( ) the state DA(_) is K-reachable for all K.
By an argument similar to that of Lemma A.7, then, we see that Bx ¢ = DA< ) for
allK < K" Thus, C{ K-implements fforall K < K*.m

E. Proof of Proposition 3

Suppose the agent has a-maxmin preferences and let f € D(X). By Lemma
A7,Bge, = D(X)forallK < K. By Lemma A.6, beliefs D(X) are represented by a
orrespondence b* where b* (0) X\Lj, where Lj is a particular strict lower-contour
set of ZZy. Let 6 € ©. Since D(X) is incentive-compatible (part (ii) of Lemma
A.6), we have min,cy+(p) ug(x) > min, c+(g) ug(x) for all #', and also min,cy+(g) ug(x)
> ue()?). Since b*(@) is formed by removing a strict lower-contour of -4 from X, it
follows that every 7~,-maximal outcome is a member of b*(@) (that is, type 0 believes
his most-preferred outcome(s) are possible consequences of truthful reporting under
beliefs b*). Therefore, for all 6,6 € ©, max, ey (g Ug(X) > Maxyep(g)ug(x). Thus,
under beliefs b*, Ug(0) > Ug(0) and UG(6) > uy(x) forall 6,0 € O, so that C;
implements fforall K < K. B

F. Proof of Proposition 4

If f is c-implementable by a contract C, then K* induces incentive-compatible
beliefs B - under C: in other words, C must K*-implement f. Therefore, by part (iii)
of LemmaA.6,f € B C D(X), so that fis IR-Dominant. -

Now let f € D(X) be nontrivial. By Lemma A.7, Bxc, = D(X) for K < K
and Bgc = {f} for K > K. Since c is strictly increasing in K this means an agent
of type 6 chooses either K* = 1orK* — K. Ifuj(f) — c(K) < mingep(x ug(g(6)),
then the payoff from acquiring ability K and perfectly manipulating the mechanism
does not exceed the (maxmin) payoff of acquiring K = 1 and reporting truthfully
under beliefs By ¢, = D(x). Thus, if maxgeeuj(f) — MiNgep,x) ug(g(H)) < c([?),
each type 6 chooses K* = 1 and Cyc-implements f. B

G. Proof of Proposition 5

Suppose T = (K B) and that C T-implements a function f. Let BT denote
the effective belief for T" given C, and let Cr; = {BTC\{g} g € BTC\{f}} Let
T = (K’ B’) < T. We must have f € By C D(X) since Bpe is
incentive-compatible (part (iif) of Lemma A.6). Thus, fis IR-Dominant.

LEMMA A.10: Iftherg exist B,B' € B'such that B,B' C Breand C' C CT’fégluch
that the transition B — B'is T"-valid, then there exists C" C C such that B — B’
is T-valid.

PROOF: . . ,

Suppose B,B’ € B’ (hence, B,B’ € ) and that B € B is T-valid for
some C' C Crp Then |C'| < K' < K and Bﬂ(ﬂc/ec/C’) C B'. Every clause
C'eC is of the form Byo\lg}, where g € Bpo\{f}. Thus,
NececC = BreMgrs .- .88 where K < K and f # g € By for all
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i = 1,...,K For each i, choose C; € C such that g; € C;; such clauses exist
because gc = f # g Note that BN C; # & because f € BN C;. F1na11y,
letC" = {Cy, ...,Ci}and observe that |C"| < K(with strict inequality if C; = C;
for some i # j). ThenB NNeee'C" € BN[eeeC' € B. N

To complete the proof of Proposition 5, observe that B¢ is T"-reachable under Cr
for all types 7. Thus, for type 7", the induced belief under contract Cysis the intersec-
tion of all states in B3’ that are T"-reachable from B7. Let By ¢, ., denote the effective
induced belief for 7"under Cr, . By the preceding dlscussmn Br e, e Bc. Suppose
toward a contradiction that BT’,Cﬂ ;& B7c. Then there is a sequence

+ 0 ¢ 51 C o C ¢ pn « .
r¢e=B —B'" =B = . =B"=BC B, C B

of T- vahd trans1t10ns where C' C Cry for all i. By Lemma A.10, each transi-

tionB~! & Bicanbe replaced by a T-valid transition from B! to B under contract C.
This implies that a state B C By C B is T-reachable under C, contradicting
the fact that B7 - is the effective 1nduced belief for T under C. Thus, By, = B,
so that Cr,; T"-implements f. B
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