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Abstract

I analyze the foundations, comparative statics and identification properties of Bayes-
ian Persuasion in terms of the receiver’s choices, preferences and welfare. By interpret-
ing sender and receiver as different selves, the model delivers new insights into the
interaction between temptation, attention, demand for commitment, and the value of
information. All model parameters—and, thereby, endogenous signals—are identified
from receiver’s behavior, enabling simple comparative statics regarding the degree of
conflict between agents and measures of optimism or pessimism. My results differ
substantially from those of related decision models, highlighting the role of motivated

attention in intrapersonal conflict.

1 Introduction

1.1 Motivation

The Bayesian Persuasion model (Kamenica and Gentzkow, 2011) has received considerable
attention and become a central framework in the economics of information design and dis-
closure. In the standard setup, one agent (Sender) selects an information structure and
commits to revealing its signal realization to another (Receiver). The literature has exam-
ined numerous extensions and variations of the baseline model, with results typically focusing
on Sender’s choice of information and whether he benefits from this opportunity. This paper
examines the interaction from Receiver’s perspective. In particular, I develop a decision-
theoretic analogue of Bayesian Persuasion that takes as primitive Receiver’s preferences or

choices; Sender’s behavior is not directly observed and must be inferred from Receiver’s.
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My motivation is twofold. First, the decision-theoretic approach allows several basic
questions about the identification and comparative statics of persuasion to be resolved at
a high level of generality. For example, when might Receiver benefit from commitment
(shrinking the action set) or from additional public information? Each avenue serves to level
the playing field against Sender’s commitment power but distorts incentives in nontrivial
ways. Nonetheless, these, and other, questions resolve quite naturally in my framework.
Identification is also of central importance: does Receiver’s behavior reveal parameter values
(utility functions and prior beliefs), or is richer data needed? It turns out that various types
of Receiver data are sufficient to identify all parameters—hence unobserved information
provision—and my results provide methods to perform such elicitation.

Second, the Receiver-based model of persuasion, interpreted as an intrapersonal interac-
tion, provides a theory of behavior delivering new insights into widely-studied phenomena
such as temptation, (in)attention, and demand for commitment. This approach—similar
in spirit to self-signaling models in behavioral economics—yields new implications for, and
links between, the value of commitment and of information for agents facing temptation or
other competing motives when making decisions.

To illustrate, consider an individual deciding between two options at a restaurant: a
burger or a salad.! The burger is always the same but the salad varies with exogenous
factors like the availability of ingredients, how busy the kitchen is, and so on; in effect,
there are two types of salad and an exogenous state determines which type will arrive if
the individual orders one. The individual prefers the first type of salad to the burger and
the burger to the second type, and prior beliefs are such that the salad is optimal ex ante.
These preferences are represented by a utility index w and prior beliefs p. “Temptation”
preferences involve the same prior but a different utility index v; in this case, v ranks the
burger strictly preferred to either type of salad. What will the individual do?

The literature has provided a variety of answers. Strotzian models (Strotz, 1955), for
example, involve changing utility functions: the ex-ante function v changes to v at the time
of consumption. Thus, the burger is chosen with probability 1. In the Gul and Pesendorfer
(2001) model, utilities do not change over time. Instead, the individual maximizes u-utility
minus the “cost of self-control”: the gap in wv-utility between the chosen option and the
v-maximal option. Thus, temptation-utility v influences, but does not dictate, consumption
choice: depending on u and v, the individual may choose the burger or exercise costly self-
control and choose the salad. Many models building on Strotz (1955), Gul and Pesendorfer
(2001), and others have been developed.

The mechanism in this paper is fundamentally different. Like the Gul and Pesendorfer

IThis is a slightly-modified version of the leading example in Gul and Pesendorfer (2001).



(2001) model, my approach combines temptation with self-control. However, the form of self-
control and the manner in which v influences choice are different. Specifically, I treat u as
Receiver’s utility function in Bayesian Persuasion and v as Sender’s. This means information
is chosen to maximize expected v-utility given that signal-contingent consumption choices
maximize expected u. Thus, temptation compels the individual to pay selective attention
in order to increase the probability of the burger being chosen; v and p are such that the
salad is preferred ex-ante but selective (or motivated) attention can generate acceptable
justifications (signal realizations) for choosing the burger. That choices must be justified is
precisely how the individual exercises self-control, and selective attention provides a way to
increase temptation-utility v subject to that constraint.?

In general, the intrapersonal (or “behavioral”) interpretation of the model captures situ-
ations where the same individual or entity (i) acquires information and subsequently makes
choices, (ii) experiences temptation or other competing motives, and (iii) must justify choices,

using available information, as consistent with their “true” objective.

Example 1. Consider the following scenarios:

(a) A voter values candidates according to their policy positions (utility u) but may be
swayed by other characteristics like charisma or party affiliation (utility v). Selec-
tive attention to news, debate highlights, etc can provide policy-based rationales for

supporting candidates of greater v-utility.

(b) An investor decides which firm(s) to invest in; u weighs both profitability and social
responsibility while v represents “selfish” preferences that only consider the investor’s
returns. Selective attention to financial statements, environmental impact reports, etc

can skew u-optimal investment decisions in favor of more profitable firms.

¢) An organization conducts a study to determine whether to fund a project; u reflects the
g y J
publicly-stated objectives of the organization and v those of its members. Carefully-

crafted studies can advance priorities v while justifying choices as consistent with u. ¢

These scenarios highlight the role of motivated attention in resolving conflict between objec-

tives u and v. They also suggest why choices must be justified as u-optimal. In (a) and the

2In keeping with the standard Bayesian Persuasion framework, there is no cost of acquiring information.
For example, the individual might ask the server what kind of salad is available (perfect information) or opt
for a noisier signal (peripheral glances at other tables or the kitchen line, recent online reviews, etc). To some
extent, bounds on information are implicit in the (exogenous) state space. A more elaborate model might
explicitly introduce costly information but here I deliberately focus on how intrapersonal conflict affects
incentives for acquiring freely-available information.



restaurant example above, psychological constraints like willpower or a desire to maintain a
positive self-image can create a need to justify choices; similarly, self-image or ethical consid-
erations might lead to the behavior in (b). There are many precedents for such self-imposed
constraints in the literature.® In contrast, the constraint in (c) is imposed externally by the
public, who demand that the organization uphold standards u.*

In general, information acquisition serves to “reverse engineer” justifications for tempting
actions. The agent sacrifices some wu-utility by garbling free information but is otherwise
satisfied with the plausible deniability offered by signal realizations; acceptance of such
tailored information despite the availability of perfect information is what distinguishes this
from standard rational behavior.® Note, however, that since the distribution of posteriors
averages out to the prior, individuals in my model cannot systematically bias themselves.®

As alluded to above, this mechanism for resolving intrapersonal conflict incorporates el-
ements of the influential self-signaling paradigm (Bénabou and Tirole, 2002) in behavioral
economics. Despite overlapping motivations, this strand of literature has evolved separately
from the decision-theoretic approach to intrapersonal conflict. This paper does not unify
these strands but, by bringing elements of self-signaling to a decision-theoretic setting, pro-
vides key insights into its foundations, comparative statics and identification properties.
My approach also facilitates comparisons to established axiomatic models of intrapersonal

conflict; as we shall see, motivated attention has rather different implications for behavior.

1.2 Results

A single decision maker, Receiver, chooses among acts (Anscombe and Aumann, 1963):
profiles f = (f.)weq of lotteries f, € AX where Q is a finite set of states, X a finite

3For example, there is an active literature on justifiable choice (see section 1.3). Moral considerations or
self-image concerns are among several reasons why individuals feel a need to justify choices. Adam Smith
(Smith, 1759) argues that “we endeavour to examine our own conduct as we imagine any other fair and
impartial spectator would examine it.” Here, one might interpret u as an individual’s desired “type”; in
order to maintain a positive (perhaps moral) self-image, the individual requires choices to be consistent with
u. Such consistency resembles a personal rule or, as Ainslie (1992) describes it, “the kind of impulse control
... which allows a person to resist impulses while he is both attracted by them and able to pursue them.”
Bénabou and Tirole (2004) develop a model capturing these ideas.

4Similarly, individuals may feel compelled to signal their “type” u to others. Such image (or social
signaling) concerns are especially prevalent in settings of charitable giving and related activity; see, for
example, Bénabou and Tirole (2006), Grossman (2015), and Exley and Kessler (2023).

This is similar to the concept of “moral wiggle room” (Dana et al., 2007) in contexts of other-regarding
behavior (and within the scope of my model), where uncertainty about the consequences of actions “justifies”
selfishness. This incentivizes various forms of willful ignorance (Haisley and Weber, 2010; Exley, 2016;
Grossman and Van Der Weele, 2017; Robbett et al., 2024) or “motivated errors” (Exley and Kessler, 2024).

6That is, agents in my model need not choose freely-available perfect information but are otherwise
Bayesian in their analysis of acquired information. Many other theories of information avoidance (belief-
based utility, optimism maintenance, etc) do not have this property; see Golman et al. (2017) for a survey.



set of outcomes and AX the set of objective lotteries over X. If Receiver chooses f and
state w realizes, an outcome is generated by lottery f,,. In the restaurant example above, for
instance, there are two states and ordering a burger corresponds to the act (Burger, Burger)
(the same deterministic outcome in each state) and ordering a salad to (Saladl, Salad2)
(different outcomes in different states).

A menu is a finite set A of acts available to Receiver. The analysis involves different

types of choice or preference primitives based on menus:

e Menu preferences - indicating Receiver’s ex-ante ranking of menus; A = B means

~

Receiver prefers committing to menu A over committing to menu B.

e Random choices p indicating Receiver’s unconditional choice distributions from menus;
p(f) € 0,1] is the frequency with which Receiver chooses f from A.

e State-contingent random choices )\, indicating choice distributions in different states;

MA(f) € 10,1] is the frequency with which Receiver chooses f from A in state w.

e Choice correspondence data c indicating which actions are chosen with positive prob-

ability; c(A) is the support of p# (or the union over all w of the support of \7).

Persuasion Representations of these primitives involve three parameters (u, u,v): prior be-
liefs, Receiver’s utility function and Sender’s utility function, respectively. Such representa-
tions reflect Receiver’s preferences or choices given that an (unobserved) Sender controls the
information available to Receiver. At signal realizations, Receiver updates beliefs via Bayes’
rule and chooses actions to maximize expected u; anticipating this, Sender chooses informa-
tion to maximize expected v. In Persuasion Representations of 2—, A >~ B indicates Receiver’s
expected utility from the interaction is greater at menu A than at menu B. In Persuasion
Representations of p, distributions p4 match the distribution of Receiver’s choices generated
by Sender’s optimal information structure at A; similarly, Persuasion Representations of A
require A to match the distribution generated by the interaction in state w.

The paper develops several results for Persuasion Representations, organized as follows:

e [dentification (Section 3). The parameters (u,wu,v) are identified by any of the above
primitives, with one caveat: identification of y from A or ¢ requires u % v, where &~

indicates positive affine transformation.

e Comparative Statics (Sections 4.1 € 4.2). 1T show how Receiver’s value of commitment
and information varies with the degree of conflict with Sender. I characterize extreme

cases such as u =~ v as well as smoother notions of “more-aligned” preferences.



e Sophistication & Naivete (Section 4.3). Comparing 2~ to A reveals whether Receiver

correctly forecasts behavior or is optimistic/pessimistic regarding Sender’s motives.

e Aziomatic Foundations (Supplemental Appendiz). 1 provide an axiomatic character-
ization of Persuasion Representations for menu preferences 77 that, in turn, yields a
characterization for ¢ (hence p and \). My approach takes p as given in order to

simplify the presentation but can be modified to drop this assumption.

The identification results show that Bayesian Persuasion interactions can be understood
entirely from the perspective of Receiver: direct observation of Sender is not required to
elicit parameter values—hence endogenous signals—and various types of Receiver data each
suffice. The fact that ¢ reveals both u and v is somewhat unusual relative to the literature,
as such data do not involve preferences for commitment or even sophistication (correct
forecasting of future behavior) on the part of the agent.

Given this identification result, most results in section 4 are established for 77 and ¢. For
example, Proposition 1 shows that =~ satisfies Preference for Flexibility—A O B implies A =
B—if and only if ¢ satisfies Sen’s Condition a—A C B implies ¢(B) N A C ¢(A)—and that
either property holds if and only if u ~ v or u &~ —v. Thus, in Persuasion Representations,
Sen’s Condition « (Sen, 1971) for choice from menus is equivalent to Preference for Flexibility
(Kreps, 1979) for choice between menus. My results reveal many such relationships between
>~ and c¢. As a practical matter, the fact that Preference for Flexibility permits u ~ —wv
is a significant departure from related models and points to nuanced relationships between
temptation and commitment when selective attention is in play.

I also analyze Receiver’s value of additional information. This involves a menu operation
that simulates public signals: given A and a Blackwell experiment o, the menu o0 A mixes
acts in A so that it is as if Receiver (i) chooses from the original A, and (ii) before doing so,
observes a signal from o in addition to, and independently of, that generated by Sender.”
Thus, o acts as a lower bound on the experiments available to Sender to choose from. By
construction, 0 A D A, so such bounds provide flexibility to Receiver.® Proposition 1 shows
that Preference for Information—oA 7 A for all A and oc—is equivalent to Preference for
Flexibility and that Sen’s Condition « is equivalent to Informational Sen’s a—c(cA)N A C
¢(A). Thus, my findings establish links between the value of commitment and of information:

results involving preference for commitment have equivalent value-of-information analogues.”

"The menu oA is virtually identical to a construction of Blackwell (1951,1953), adapted to the domain
of Anscombe-Aumann acts; Wang (2022) employs an equivalent such adaptation.

8 As explained in section 4, however, acts in 0 A offer a kind of commitment power by giving Receiver the
ability to delegate choices conditional on o-signals to another party (eg, to the server at the restaurant).

9While relationships between dynamic (in)consistency and demand for information have been examined in



An important question in any dual-selves setting is whether the individual is sophisticated
regarding their own future behavior. My approach, similar to that of Ahn et al. (2019),
involves comparisons between ex-ante values of menus (preferences 77) and ex-post choices
A from menus. For sophisticated agents, the index v revealed by 7~ matches that revealed
by A; otherwise, the agent may be optimistic or pessimistic regarding v. I provide full
characterizations of these cases. Notably, A (not ¢) turns out to be most useful for this
exercise, as even sophisticated agents often violate A ~ ¢(A); that is, Receiver’s welfare is
affected by unchosen alternatives (section 4.3 provides examples).

Finally, the axiomatic characterizations (see the Supplementary Appendix) establish how
one might test whether Receiver choice data ==, p, A or ¢ are consistent with Bayesian
Persuasion. The axioms also facilitate comparisons to other models. For example, preferences
>~ in my model typically violate the Desire for Commitment axiom (f 7~ A for some f € A) of
Dekel et al. (2009); instead, my model satisfies A - f for all f € A. The Dekel et al. (2009)
representation encapsulates several other models of temptation, making this distinction a

key test for attention-based mechanisms of resolving intrapersonal conflict.

1.3 Related Literature

1. Bayesian Persuasion and Comparative Statics. My model is a decision-theoretic analogue
of Bayesian Persuasion (Kamenica and Gentzkow, 2011). Crucially, I focus on Receiver’s
(not Sender’s) choices and welfare and parameters (u,u,v) are not exogenously specified
but revealed by Receiver’s behavior. My analysis involves comparisons between different
persuasion games (menus or action sets), generating insights into how Receiver’s welfare and
behavior varies with the stakes, trade offs and degree of conflict with Sender.

Curello and Sinander (2022) establish rich and general results on the comparative statics
of Bayesian Persuasion—specifically, they characterize conditions on model parameters un-
der which Sender chooses a more informative (Blackwell, 1951) structure. This paper also
studies comparative statics but the questions considered are different, as is the methodology.
Changes to Receiver’s welfare need not be due to Blackwell-comparable changes to informa-

tion, so neither study nests the other.

2. Self-signaling and Strategic Ignorance. The behavioral interpretation developed in this
paper incorporates elements of the self-signaling model of Bénabou and Tirole (2002). In

their model, a time-inconsistent agent holds beliefs about the returns to costly effort and

the literature, direct connections between commitment and the value of information of the type considered
here have not. Most decision-theoretic models of intrapersonal conflict do not involve menus of acts but
rather of lotteries, and those that do have not utilized the 0 A construction.



may engage in selective information acquisition and/or costly memory retrieval to motivate
such effort. Carrillo and Mariotti (2000) analyze a model of intrapersonal conflict where
a present-biased individual sometimes chooses not to acquire freely-available information—
strategic ignorance acts as a commitment device. Jakobsen (2021) examines this channel
in arbitrary decision problems by studying Sender’s preferences for information in Bayesian
Persuasion.!? Here, by providing justifications for tempting choices, information acquisition

serves not as a commitment device but as an enabler.

3. Temptation, Demand for Commitment, Sophistication. Temptation and related behavior
remains an active area of research.!! Models typically generate demand for commitment
via the combination of intrapersonal conflict and sophistication (awareness of the conflict);
menu preferences directly express this demand and as such are the standard primitive used
to characterize models. Here, menu preferences suffice but so do choice data p, A, or ¢. The
latter primitives do not express demand for commitment or require sophistication of the

agent, providing new avenues to test for temptation problems and identify parameters.

4. Justification, Rationalization, Regret. In the behavioral interpretation, a choice is justified
if a signal realization makes it u-maximal at posterior beliefs. Other models of justifiable
choice, like Kalai et al. (2002), typically involve multiple rationales (preference orderings)
and a choice is justified if it is maximal under at least one rationale.!? The distribution of
expected-utility preferences arising in my model (involving the same u but different posterior
beliefs) is thus analogous to a set of rationales that varies endogenously with the menu.
Regret avoidance can also generate selective attention. Wang (2022) adapts the frame-
work of Sarver (2008) to demonstrate individuals may prefer less information in order to
avoid learning that past choices were ex-post suboptimal; thus, selective attention helps jus-

tify prior actions by suppressing new evidence against their desirability.

5. Random Choice and Inattention. Persuasion Representations involve a new mechanism
generating random choice. Random utility models (Falmagne, 1978; Gul and Pesendorfer,
2006) cannot rationalize behavior generated by Persuasion Representations because the in-

formation chosen by Sender (hence, the distribution of expected utility functions governing

10The setup is similar to this paper but involves direct observation of Sender’s informational preferences.
Here, Sender’s behavior is unobserved and must be inferred from Receiver’s, so the model, results, and
interpretation are quite different.

1Tn addition to an extensive theoretical literature, many recent studies approach the topic empirically or
experimentally; see, for example, Toussaert (2018), Schilbach (2019), or Cobb-Clark et al. (2024). Table 1
of Carrera et al. (2022) summarizes over 30 recent studies on take-up of commitment contracts.

12Gee also Cherepanov et al. (2013), Lehrer and Teper (2011), and Ridout (2023).



Receiver’s choices) varies with the menu of alternatives. For the same reason, the repre-
sentations of Lu (2016) and Dekel and Lipman (2012) cannot rationalize choices generated
by Persuasion Representations. Models of costly contemplation (Ergin and Sarver, 2010) or
rational inattention (Ellis, 2018; Caplin and Dean, 2015) can rationalize Persuasion Rep-
resentations only if one allows the cost of information to vary with the menu; if the cost
function is menu-independent, increasing in the Blackwell order, and non-constant, the re-

sulting model cannot rationalize Persuasion Representations.!?

6. Identification and Characterization of Unobserved Signals. Several studies derive condi-
tions under which choice data are consistent with rational choice under some information
structure; see, for example, Dillenberger et al. (2014), Lu (2016), Azrieli and Rehbeck (2022),
Rehbeck (2023), or Doval et al. (2024). These studies do not fully characterize sender-receiver
communication models or analyze how the parameters of such models might be identified.
In that sense, the closest work to this paper is Jakobsen (2021); as noted above, the con-
tribution of that paper is quite different because it focuses on environments where Sender’s

informational preferences are directly observed.

2 Persuasion Representations

2.1 Framework

States, Outcomes, Acts

The outcome generated by Receiver’s action depends on an exogenous state of the world.

To capture this, I model actions as Anscombe-Aumann acts [ : Q@ — AX where:
e () is a finite set of N > 2 states (with generic members w),
e X is a finite set of outcomes (generic members x,y), and

e AX is the set of lotteries over X (generic members p, q); lottery p delivers outcome x

with probability p(x).

Acts, or state-contingent lotteries, may be written as profiles f = (f,,),ecq where f, := f(w).
In state w, f returns lottery f, which in turn generates outcome x with probability f,(x).

Constant acts (p, ..., p) are typically denoted p. Let F' denote the set of all acts and A the

3Informally, one can construct menus where (i) perfect information is chosen by Sender in a Persuasion
Representation, but (ii) the stakes are so low that the utility difference between perfect information and
no-information does not outweigh the (menu-independent) cost of acquiring perfect information.



set of all finite, nonempty subsets of F'. A set A € A serves as an action set, or menu, of
acts available for Receiver to choose from. Singleton menus {f} are typically denoted f.
Lotteries and acts are equipped with standard mixing operations. In particular, ap +
(1 — «)q, where a € [0, 1], denotes a lottery r such that r(z) = ap(z) + (1 — a)q(x) for all z.
This operation extends to acts by defining a.f + (1 —«)g as the act h such that, for all w € Q,
h, = af, + (1 — a)g,. These operations generalize to finite mixtures ayp' + ... + a,p"™ or

arft+ ...+ anf*, where a; > 0 and ag + ... + a, = 1, in the natural way.

Experiments and Signals

A Blackwell experiment is a matrix with |Q2| = N rows, finitely many columns, and entries
in [0,1] such that each row constitutes a probability distribution and no column consists
entirely of zeros. Let £ denote the set of all experiments, with generic members o. Each
column of an experiment represents a message that may be generated and each row a state-
contingent distribution over messages. For example, the N x N identity matrix, denoted o*,
associates a distinct message to each state and therefore represents perfect information.
An experiment can be expressed in terms of its columns. To do so, let S denote the
set of all profiles s = (s,)weq of numbers s, € [0, 1] such that s, # 0 for at least one
w € €. Elements of S, signals, represent columns that may be present in an experiment.
Abusing notation slightly, ‘s € ¢’ indicates that s is a column of o. A matrix [s',...,s"] of
signals is an experiment if and only if s* + ...+ s" = ¢, where e = (1,...,1) € S denotes an
uninformative signal (or uninformative experiment since e qualifies as an experiment).
Signals and experiments yield additional mixture operations on acts. If s € S, let sf +
(1 — s)g denote the act h such that h, = s, f, + (1 — s,)g.; this operation is similar to the
a-mixture of f and g defined above but allows potentially different weights s, to be applied
in different states w. More generally, if o = [s',...,s"] is an experiment, s' f! + ... + s"f"
denotes the act h such that h, = s fl+ ...+ s"f"; h, is a well-defined lottery because o is

a Blackwell experiment and, thus, s}, 4+ ...+ s = 1.

Choice Primitives

My analysis involves different kinds of preference or choice data based on menus:

1. Menu preferences - over A where A 7~ B means Receiver prefers committing to

menu A over committing to menu B.

2. Random choice data p = (p*)4c4 where p? is a probability distribution over A and
p(f) € [0,1] is the probability Receiver chooses f from A.

10



3. State-contingent random choice data A = (A\?),cq ac4 where A2 is a probability
distribution over A and A\2(f) € [0, 1] is the probability Receiver chooses f from A in

state w.™

4. Choice correspondence data ¢ : A — A where ¢(A) C A is the set of acts Receiver

chooses from A with positive probability (in at least one state).

Note that ¢ can be derived from p or A but that no other pairs of primitives are nested in
such a way. Most of my analysis treats the primitives separately (eg, does not require the
analyst to observe both - and p). The only exception is section 4.3, which combines 77 with

A to study the agent’s sophistication.

2.2 Persuasion Representations

This section defines Persuasion Representations for each type of primitive described above.
Let AQ denote the set of probability distributions over 2. The representations involve three
parameters, (p,u,v), where p € AQ is a prior and u,v : X — R are utility indices for
Receiver and an (unobserved) Sender, respectively. The notation u ~ v’ indicates positive
affine transformation: there exist a > 0, 8 € R such that v/(z) = au(x) + g for all x € X.

For any i1 € AQ and state w, let ji,, denote the probability of state w. Throughout, prior
beliefs p have full support and u,v are non-constant. The indices u,v apply to lotteries
as follows: if p € AX, then u(p) := Y . u(x)p(r) is Receiver’s expected utility of p;
similarly, v(p) denotes Sender’s expected utility. For acts, Receiver’s expected utility is
given by U : F — R where U(f) := Y cqu(fu)t. More generally, for any signal s € S,
let US(f) := >, cq t(fu)Swiks; this represents Receiver’s expected utility conditional on s.'?
Note that U¢ = U. Replacing u with v leads to functions V,V*® : F' — R representing
Sender’s expected utility conditional on signal realizations.

In a persuasion game at A, Receiver chooses an act from A after observing a signal
generated by Sender. Sender provides information by freely selecting an experiment ¢ and
committing to revealing its signal realization. Sender correctly forecasts Receiver’s signal-
contingent choices and constructs o to maximize his own expected payoff. The agents share a
common prior but typically differ in their preferences over outcomes generated by the chosen
act(s); this is the source of conflict and it varies with the menu—some menus consist of acts

for which Sender and Receiver largely agree on the best course of action, others less so.

4Note that by conditioning on w, choice data A2 indicates that the analyst (not Receiver) knows w.
15This holds because the Bayesian posterior of j at s assigns probability 2« to state w, where s - yu =

e
Y wreq Swfer - Thus, expected utility conditional on s is Y- ., u(f“;)% The function U® multiplies this

value by the constant s - > 0 and therefore represents the same ranking of acts.

11



(a) Menu A = {f, g} in utility space (b) F(A) for A={f,g}

Figure 1: Construction of F'(A) for two states and A = {f, g}. The dashed line is Receiver’s
indifference curve through f; its slope is determined by p and indicates that f is prior-
optimal. Therefore, f is an induced act: it corresponds to Sender choosing o = e (no
information). The upper-right corner of F(A) is the induced act (fi,g2) corresponding
to perfect information. The upper-left point is induced by maximizing the probability of
posterior beliefs that make Receiver indifferent between f and g. In general, F/(A) is a
polytope in F' bounded by (and passing through) Receiver’s prior-optimal act.

To begin, it is useful to express the range of state-contingent lotteries that can be achieved
by varying the information available to Receiver. At menu A, an experiment ¢ transforms
into an act as follows. Fix a state w. In this state, o generates a distribution over signals
(s € o is generated with probability s, ) and at every s € o Receiver chooses a U®-optimal act
f* € A. In state w, this act delivers a lottery f3. Thus, the state-contingent distribution over
signals becomes a distribution over lotteries, which reduces to a single lottery in the natural
way. Repeating this procedure for each state yields an induced act: a state-contingent
lottery over outcomes generated by Receiver’s choices under information ¢ at menu A.

The above procedure associates a unique induced act to an experiment o if there is a
unique U*-optimal act f® € A for each s € ¢. If there are multiple U®-optimal acts for some
s, different tie-breaking selections produce different induced acts. To capture the full range

of possibilities, the set of induced acts at A is defined as

F(A) := {Zsfs co €&, fFeco(A), US(f*) > U(g) Vg € A} : (1)
seo

where co(A) is the convex hull of A. This set contains all induced acts generated by varying

both o and Receiver’s tie-breaking behavior: if Receiver finds two or more acts optimal at s,

then f* is permitted to be any convex combination of those acts. Note that only parameters

(i, u) are needed to construct F'(A). Figure 1 provides an illustration.
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Since Sender anticipates Receiver’s choices, Sender’s choice of information at A is effec-

tively a choice from F'(A). This leads to the following definition for menu preferences:

Definition 1. Parameters (p, u,v) constitute a Persuasion Representation for = if u,v

are non-constant, p has full support, and the function U : A — R given by

U(A) :=maxU(f) subject to f € argmaxV (g) (2)
geEF(A)

represents -, where U(f) = > u(fu)pw and V(f) = > v(fu) -

In a Persuasion Representation for 77, Sender correctly forecasts Receiver’s signal-contingent
choices from A and selects an information structure, hence an induced act f € F(A), that
maximizes his own expected utility. When evaluating A, Receiver correctly forecasts Sender’s
choice and assigns value U(f) to A, where f is the induced act associated with the chosen
information structure. Thus, U(A) is Receiver’s ex ante expected utility from the interaction
at A. This is well-defined because F'(A) is compact (see the Supplementary Appendix).
Implicitly, formula (2) makes two assumptions about tie-breaking behavior. First, the
requirement that f € argmaxgcpa) V(g) means that if multiple acts maximize U® at some
s, Sender expects Receiver to select a V*-maximal act among the U®-maximizers. This is
the standard “Sender-preferred” tie-breaking rule in the Bayesian Persuasion literature and
it ensures existence of a Sender-optimal information structure at every A. On a technical
level, it emerges from maximization over F'(A) because that set includes all possible induced
acts that come about by varying both information and Receiver’s tie-breaking selections.
Second, the “max” in (2) means that if Sender finds multiple information structures

optimal at A, he selects from such structures a Receiver-optimal one. Formally, let

VI(A) := maxzvs(fs) subject to f* € ar§$ax U*(f)

sco

and

U?(A) = ZUS(fS) where f* € argmax U*(f).

se€o fEA

These functions capture Sender’s and Receiver’s value, respectively, of information o at A: if

Sender chooses o, he expects payoff V7(A) and Receiver expects U?(A). Clearly, V7(A) in-

16GSee the Supplementary Appendix for an axiomatic characterization. Note that it is straightforward to
ensure v is non-constant (Axiom 1 does so) but that if v is constant, Receiver’s behavior is indistinguishable
from the u ~ v case. Thus, for both for menu preferences and the other primitives, it is without loss to
assume v is non-constant as well.
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corporates the Sender-preferred tie-breaking rule described above. The “Receiver-preferred”
rule implied by (2) means that if multiple experiments o maximize V?(A), Sender breaks
the tie by maximizing U?(A). The following theorem makes this explicit by re-expressing

Persuasion Representations for =~ in a more familiar form; I omit the straightforward proof.
Theorem 1. The function U defined by (2) above satisfies

U(A) = max U7 (A) subject to o € argmgax Vo (A). (3)
g o'e
Theorem 1 states that formulas (2) and (3) coincide; (3) more-directly expresses Receiver’s
payoff as the result of Sender’s information design problem but, as we shall see, (2) facili-
tates comparisons to related models and is useful for deriving various results, including the
axiomatization (see the Supplementary Appendix).

Persuasion Representations for p, A, and ¢ do not involve Receiver’s ex ante value U(A)
but rather the actual choices from A stemming from Sender’s information structure. Let
E*(A) C & denote the set of solutions to the maximization problem (3). An experiment
o € £*(A) is A-minimal if there is no ¢’ € £*(A) such that ¢’ is a garbling of o and o’ # o.
Given A, a behavioral strategy is a profile 34 = (84%),cg such that f4* € AA for all

s € S; that is, 34 is a distribution of choices from A at signal s.

Definition 2. Parameters (p,u,v), where u,v are non-constant and g has full support,
constitute a Persuasian Representation for p if for every A there is a behavioral strategy
B4 and A-minimal experiment o € £*(A) such that

(i) for all s € S,

supp(f*) = arg;nax V*(f) subject to f € argér;‘ax U?(g), and
9

(ii) forall f € A, p(f) = X sen(s - )B4 (f).

Informally, parameters (u,u,v) constitute a Persuasion Representation for p if, for every
A, choices frequencies p” coincide with those generated by Sender’s chosen experiment and
Receiver’s signal-contingent choices for that experiment; these choices must be optimal given
parameters (i, u,v). Part (i) of Definition 2 requires that, for every s € o, Receiver chooses
the act(s) that are consistent with his own optimization and the Sender-preferred tie-breaking
criterion. Part (ii) requires that the observed probability of choosing f from A, p?(f),
coincides with the total probability of choosing f given o and $4; in particular, s - u (the
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dot product) is the total probability of generating signal s € o under prior y, and 34*(f) is
the probability of choosing f conditional on signal s.

Since the chosen experiment o is a member of £*(A), it satisfies the Receiver-preferred
tie-breaking criterion described above. It is also required to be A-minimal. While neither
agent’s payoffs or incentives are affected by the A-minimality requirement, it implies that if
e (no information) is both Sender- and Receiver-optimal, then e is chosen by Sender. This

simplifies the statements and proofs of several results.

Definition 3. Parameters (i, u,v), where w,v are non-constant and p has full support,
constitute a Persuasian Representation for \ if for every A there is a behavioral strategy
4 and A-minimal experiment o € £*(A) such that

(i) for all s € S,

supp(%*) = argmax V*(f) subject to f € argmax U*(g), and
f geA

(ii) for all f € Aand w € Q, N2(f) = 2., 5B (f).

The definition of a Persuasion Representation for A is nearly identical to that of p. The only
difference is that state-contingent, as opposed to total, choice frequencies must agree with

those generated by the persuasion game with parameters (u, u, v); condition (ii) reflects this.

Definition 4. Parameters (u,u,v), where u,v are non-constant and g has full support,
constitute a Persuasian Representation for c if for every A there is a behavioral strategy
4 and A-minimal experiment o € £*(A) such that

(i) forall s € S,

supp(4*) = argmax V*(f) subject to f € argmax U*(g), and
f geA

(ii) e(A4) = U,e, supp(8*).

Intuitively, parameters (u,u,v) constitute a Persuasion Representation for ¢ if, for every
A, ¢(A) coincides with the support of p# where p has a Persuasion Representation with
parameters (p1,u,v). Alternatively, c(A) coincides with (J, ., supp(A;}) where X has a Per-
suasion Representation. Either way, ¢(A) contains all acts in A that are chosen with positive

probability in at least one state; any additional frequency information is discarded.
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Before concluding this section with some comments on Persuasion Representations, a
brief discussion of condition (i) in Definitions 2-4 is in order. Condition (i) requires that, at
each signal realization, every act in A that satisfies the Sender-preferred tie-breaking rule is
chosen with positive probability. There are other ways of refining choices, but the advantage
of (i), together with the A-minimality requirement, is that special cases of the model reduce
to familiar representations in decision theory. For example, if u ~ —v, Sender chooses no-
information and Receiver simply chooses based on his prior. By (i), then, ¢(A) consists of
all prior-optimal acts in A, as in standard choice models, rather than some arbitrary subset
of optimal acts. For the purposes of this paper, such well-behaved special cases are not
strictly necessary but allow a cleaner exposition and simpler proofs; this is the main reason

for imposing tie-breaking conventions beyond the standard Sender-preferred criterion.

2.2.1 Persuasion Representations: Comments

The Behavioral Interpretation. As explained in the introduction, the behavioral interpreta-
tion involves two competing forces within the individual: consumption choices must maxi-
mize u conditional on beliefs but the agent allows temptation (utility v) to influence atten-
tiveness to freely-available information. Choices at signal realizations s maximize U® and
are therefore “justified” even though the experiment generating those signals is designed to
make choices increase v-utility. In essence, the agent engages in motivated attention in order
to obtain justifications for choosing tempting options; the need for such justifications is a
form of self-control.

When is information obtained? For menu preferences -, the representation values menus
according to their expected w-utility from the interaction; v enters the picture only when
choosing from a menu. Therefore, information acquisition occurs after selecting a menu but
before, or during, the time of consumption (eg, the agent looks at the menu, asks the server
a question, then chooses an item based on the response). This is consistent with tempta-
tion being a transient phenomenon: the agent enters a “hot” state when confronted with
tempting options but is otherwise in a “cold” state where only u matters. Note, however,
that Persuasion Representations of p, A or ¢ need not involve such transience because they
make no claims about the agent’s ex-ante value of menus. An agent who anticipates having
to make choices from A may acquire information well in advance and could even be in a
persistent “hot” state where v guides attention (eg, choosing news sources to pay attention

to in the months leading up to an election).

Strotz vs Persuasion. The representation of Definition 1 is similar to a Strotzian represen-
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tation (Strotz, 1955). In the notation of this paper, such representations take the form

Wstrot-(A) := max U(f) subject to f € argrrfllax V(g). (4)
g€

A standard interpretation is that one self, with utility U, anticipates their future-self choos-
ing from A via maximization of V. In other words, the agent’s utility function over acts
changes from U to V. The Persuasion Representation of Definition 1 has a similar math-
ematical structure, with one key difference: the future self chooses an act not from A, but
from F(A). This captures the idea that temptation influences future choice through infor-
mation acquisition: signal-contingent choices must maximize U, so selective attention can
only generate acts in F'(A). Like the Gul and Pesendorfer (2001) model, described below,
mine is not a model where U changes to V; instead, the agent experiences temptation (a
desire to increase V-utility) but exercises a form of self-control (only choosing U*-maximal

options at signal realizations s) in response.

The Cost of Temptation. In the Gul and Pesendorfer (2001) model, the decision maker may
resist temptation but suffer a cost of self-control from doing so. In the notation of this paper,

their representation may be written as

Wep(A) =max U(f) — |maxV(g) — V(f)
Thus, when choosing among acts f € A, the agent weighs U-utility against max,e4 V(g) —
V(f), the cost of self-control. Depending on A, the agent may choose a U-maximal option,
a V-maximal option or, more typically, a “compromise” option.

In my model, the agent behaves stochastically: at a typical menu A, Receiver sometimes
chooses tempting options and sometimes not—the distribution of choices is, in effect, the
“compromise” option. There is no cost of self-control, but Receiver effectively suffers a cost
of temptation given by U° (A) — U(A) (equivalently, U (A) — U°(A), where o € £*(A)).
Intuitively, perfect information o* is freely available but temptation makes the agent acquire

some o € £*(A) instead, resulting in lower expected U-utility.

The Role of Sophistication. Most decision-theoretic models of intrapersonal conflict are
characterized in terms of ex-ante menu preferences ~~. Crucially, such representations involve
forecasting of future behavior. For example, Strotzian representations of the form (4) require
the ex-ante agent, with utility U, to anticipate future choices made with V; in this sense,

the function V' in the representation reflects the initial self’s beliefs about future tastes.
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Similarly, Persuasion Representations of 77 require Receiver to forecast Sender’s choice of
information; thus, the index v reflects Receiver’s beliefs about Sender’s tastes.

In contrast, Persuasion Representations of p, A, and ¢ do not involve such forecasting or
beliefs—they merely express Receiver’s choices resulting from the interaction. Consequently,
the index v in such representations reflects the true preferences of Sender. Comparisons be-
tween 77 and (say) A, therefore, can detect whether the ex-ante agent is sophisticated (holds

correct beliefs about v) or naive (optimistic or pessimistic about v); see section 4.3.

Cheap Talk vs Persuasion. Other communication models, like cheap talk (Crawford and So-
bel, 1982), are potentially amenable to decision-theoretic analysis and the behavioral inter-
pretation studied in this paper. Cheap talk does not involve the oft-criticized assumption of
Sender commitment power that lies at the core of Bayesian Persuasion models, but typically
yields multiple qualitatively-distinct equilibria. The commitment assumption of Bayesian
Persuasion mostly eliminates this problem, leaving only particular tie-breaking issues that
are fairly commonplace in decision-theoretic models. The commitment assumption is also
more appealing in the behavioral interpretation, where signals are the result of selective

attention: the agent chooses an information source and directly observes its output.

3 Identification

This section establishes identification results for each type of choice primitive; section 3.1

provides a proof sketch and illustrates methods to elicit parameter values from the primitives.

Theorem 2. If (u,u,v) and (i, u',v") are Persuasion Representations of a preference 7~ on

A, thenu~u', v=v, and p=p'.

Theorem 2 states that Persuasion Representations of menu preferences are unique: if 2~ has
a Persuasion Representation, there is a unique prior p and unique (up to positive affine
transformation) utility indices wu, v for which (u, u, v) constitute a Persuasion Representation
of 7Z. Thus, menu preferences —, alone, are sufficient to identify all parameters. An analogous

result holds for representations of random choice rules:

Theorem 3. If (p,u,v) and (i, u',v") are Persuasion Representations of a random choice

~ 2/ ~ oy _ 7
rule p, then u = u', v =, and p = p'.

A slightly weaker result holds for A and ¢:
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Theorem 4. If (u,u,v) and (i, u',v") are Persuasion Representations of either a state-

contingent random choice rule \ or a choice correspondence ¢, then: (i) u~u' and v = v/,
and (i) if u % v, then = '

Theorem 4 states that w and v are identified from A or ¢ but that p is identified by either
primitive only if u % v; that is, if there is some conflict between Sender and Receiver. Since
c is nested by p and A, this means that outside the hairline case u =~ v, both p and A\ contain
more information than is actually required to uniquely identify all three parameters. For
this reason, most subsequent results in the paper are established only for >~ and c.

To see what goes wrong when u ~ v, observe that such preferences make Sender choose
perfect information at every menu A.'7 Consequently, in state w, Receiver chooses precisely
those acts f € A for which u(f,) > u(g,) for all g € A. These choices depend on w but
not the probability p, with which w realizes. Thus, ¢(A) does not depend on p. Similarly,
when u =~ v, state-contingent choices A\, do not reveal anything about p unless one makes
arbitrary assumptions about how tie-breaking varies with p.8

The main takeaway of Theorems 2—4 is that full identification can be achieved using
any of the four types of preference or choice data, subject to the restriction u % v for A
and c. Since (p,u,v) are identified, so is Sender’s choice of information—at any A, the
optimal information structure(s) can be derived from (u,u,v). Applying the behavioral
interpretation, this means “true” utility u, temptation utility v and the information acquired
to rationalize choices are revealed by standard choice data; to my knowledge, this is the first
general result on identification in intrapersonal signaling models. Interestingly, p and A
provide more information than is actually required: simply knowing which acts are chosen
with positive probability, as recorded by ¢, is enough to deduce (u, u, v), making measurement
error potentially less problematic. More broadly, the fact that consumption data like p, A
or ¢ can reveal and identify temptation-style behavior is somewhat unusual; commitment

preferences >~ tend to be the standard approach and are often required for such analysis.”

1"More precisely, perfect information is Sender-optimal at every A; Sender may choose coarser information
in some menus due to the A-minimality requirement, but this does not affect the argument.

18For example, one could specify a menu A where, in state wy, there is a tie between two acts and Receiver
chooses one of them with probability p.,. If Receiver employs such a tie-breaking criterion and the analyst
knows which particular act f is chosen with probability fx,,,, then )\j}l (f) reveals p,,,. However, there is no
reason to suspect that Receiver would correlate tie-breaking selections with p or, if he did, that the analyst
would know the correlation structure.

YTndeed, elicitation of commitment preferences is the standard approach in field and lab settings (see
section 1.3 for references). In their survey of the temptation literature, Lipman and Pesendorfer (2013)
argue that “choice over menus is useful if we want to study phenomena that the consumption choice alone
cannot reveal. Specifically, it is useful to study choice affected by temptations.”
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(a) Eliciting u (b) Eliciting v

Figure 2: Identifying u and v.
U Vv

(p,q) (1, q)

(r,7)
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1 1
(a) Receiver’s value (b) Sender’s value

Figure 3: Identifying u from c.

3.1 Eliciting Parameters

Given lotteries p and ¢, a menu A is a pg-bet if there is a nonempty F C () such that
A = {pEq,qEp}, where h = p' Eq satisfies h, = p/ for w € E and h, = ¢ for w ¢ E.

Menu Preferences

Receiver’s parameters (i, u) are easily identified by considering the restriction of = to single-
ton menus. In particular, {f} 77 {¢} if and only if U(f) > U(g), so the Anscombe-Aumann
theorem applies and p and u are identified.

To elicit v, the key is to determine which pairs (p, q) of lotteries are ranked the same way
by u and v. Figure 2b illustrates the idea. For any p, the index u gives a linear indifference
curve through p. To identify v, it is enough to determine the slope of v’s indifference curve
through p and the direction of increasing utility. If A,, = {pEq,qEp} is a pg-bet where
u(p) > u(q), Sender either agrees with the ranking (v(p) > v(q)) or disagrees (v(p) < v(q)).
If Sender agrees, he chooses perfect information and so A,, ~ p; otherwise, Sender disagrees
and chooses no-information, yielding p > A,,. Thus, fixing p and eliciting all ¢ such that

Apq ~ p reveals the indifference curve for v through p and the direction of increasing utility.
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Choice Distributions & Correspondences

For p, A and ¢, elicitation is slightly more involved. The first step is to identify u by analyzing
choices from menus {p, ¢} of constant acts. Fixing p, we have c({p,q}) = p if u(p) > u(q). If
u(p) = u(q), the representation breaks the tie in favor of v. Thus, p € ¢({p, q}) if and only
if u(p) > u(q) or both u(p) = u(q) and v(p) > v(q). As illustrated in Figure 2a, fixing p and
eliciting all ¢ such that p € ¢({p, q}) reveals the lower contour set of p for u; in particular,
the closure of the set of all such ¢ is the weak lower contour of u through p. Given u, one
can identify v using similar techniques developed for menu preferences: if u(p) > u(q), then
(outside of hairline cases) ¢(A,,) = A, if and only if v(p) > v(q).*°

To see how p may be identified from ¢, consider the two-state case and suppose u % v
and u % —v (the proof provided in the appendix is different and only requires u % v).
With such preferences, there are lotteries p, ¢, such that the menu A = {(p, q), (r,7)} gives
rise to the value functions depicted by Figure 3; the horizontal axis’ contain all possible
posterior beliefs (ordered by the weight assigned to state 1) and the values are those induced
by Receiver’s choices from A at those beliefs.?! At p*, Receiver is indifferent between the
two acts, creating a discontinuity in Sender’s value function. If prior beliefs satisfy p; < pf,
Sender chooses no-information; consequently, ¢(A) = {(r,r)}. If instead p; > pf, Sender
maximizes his payoff by choosing an experiment yielding two posteriors: one at p*, the other
at fi; = 1. Consequently, ¢(A) = A since Receiver chooses (r,r) at p* and (p,q) at f; = 1.
Thus, ¢(A) indicates whether py < pf or py > pf, providing objective information about
i since p* is pinned down by w. It follows that p can be identified by examining c¢(A) for
all binary menus A—for example, by moving r along its v-indifference curve and thereby

perturbing only u(r) and, thus, uj.

4 Comparative Statics from Receiver’s Perspective

This section analyzes comparative statics regarding the degree of conflict between Sender
and Receiver. In contrast to most of the persuasion literature, the focus is on how the
interaction affects Receiver’s (not Sender’s) choices and welfare.

The characterizations take two forms: (i) how Receiver’s ex ante value and subsequent
choices vary with increased flexibility, and (ii) how such values and choices vary with addi-

tional public information. The results thereby establish tight links between Receiver’s value

20To circumvent tie-breaking issues for the case p(E) = 1/2, where A,, = {pFEq, ¢Ep}, the proof uses a
more general class of menus than pg-bets; see the appendix for details.

21The desired lotteries exist because when u % v and u % —v, one may fix indifference curves (utility
levels) for one agent and move along them to set utility levels for the other; see Lemma 1 in the appendix.
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of flexibility and of information in persuasion models. While analysis of (i) involves com-
parisons between C-comparable menus, analysis of (ii) employs an operator on menus that

simulates public information. For any A and o, let

oA = {Zsfs ffe A}.
seo

The menu oA simulates an environment where Receiver chooses from A but is able to

condition this choice on the realization from o in addition to the signal generated by Sender.??

Sender recognizes this but cannot correlate realizations from his chosen experiment with

those of 0. The example below provides concrete illustrations.

Example 2. Suppose there are two states and let A = {f,g}. If 0 = o* (the identity
matrix), then o perfectly reveals the state and cA = {(fi, f2), (91, f2), (f1,92), (g1, 92) }.
Suppose u(f1) > u(g1) and u(gz) > u(f2); this means neither act dominates the other and,
in particular, that f is preferred in state 1 and g is preferred in state 2. At cA, then,
Receiver chooses f* := (f1, g2) regardless of the information Sender provides. Consequently,
U(cA) =U(f*) = u(f1)p1 + u(ga) 2, the value of A under perfect information.

If instead o is a noisy structure o = [s, t], we have 0 A = {sf+tf, sf+tg, sg+tf, sg+tg} =
{f,sf +tg,sg + tf,g}. If Receiver prefers f at s and g at t, his prior-optimal act in
oA is sf + tg; this represents the average state-contingent lottery for Receiver if Sender
provides no additional information, thereby forming a lower bound for Receiver’s welfare in

the persuasion game with public information: U(cA) > U(sf + tg).% ¢

When Sender and Receiver are different people, o A might represent an environment where
Receiver chooses from A but has access to additional public information o; alternatively, o
may represent a lower bound on Sender’s choice of information at A, making the interaction
a constrained version of Bayesian Persuasion.?!

For intrapersonal conflict, other interpretations of 0 A may be more appropriate. For
example, ¢ might represent information that is too salient to ignore; features of the choice

environment like the framing of information can affect such salience. More generally, o A

22Note that o A is virtually identical to the set of risk vectors central to the Blackwell (1951,1953) informa-
tion order. In the modern formulation due to de Oliveira (2018), the set of risk vectors for (4, o) is formed
by considering all compositions of o (viewed as a map 2 — AS) with strategies 8: S — AA. My treatment
differs by taking A to be a set of Anscombe-Aumann acts (not abstract actions) and by restricting to pure
strategies 5 : S — A, resulting in a finite menu 0 A. Wang (2022) employs an equivalent construction.

23Note that this bound is attained only if Sender chooses no-information. Introducing public information
affects Sender’s incentives, so it need not be the case that U(cA) > U(A) (see Proposition 1 below).

24For example, such bounds could be due to laws requiring minimal degrees of transparency in advertising.
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represents a situation where Receiver can commit to conditioning choices on realizations
from ¢ in addition to whatever signal their attention provides. In addition to psychological
mechanisms like willpower, such commitment might be achieved through delegation. In the
restaurant example of the introduction, for instance, Receiver might ask the server to acquire
a signal about the salad and to enter an order conditional on the signal; acts of the form
sf + tg in Example 2 above provide just that kind of delegation. Note that Sender chooses
information knowing such delegation opportunities are available—the menu o A is known to
both selves. Thus, 0 A could represent a situation where the server presents Receiver with
the menu A and an offer to delegate the choice; Sender’s choice of information takes that
offer into account. Despite the various interpretations, I will simply refer to menus oA as

settings with additional public information.

4.1 The Value of Flexibility and Information

This section characterizes special cases of the model involving standard rationality postulates.
Under what circumstances does Receiver benefit from increased flexibility or from public

information, and how is this reflected in choice data?

Proposition 1. Suppose (p,u,v) represents 7, and c. Then u v or u ~ —v if and only if

any of the following conditions hold:

(i) 7= satisfies Preference for Flexibility: (ii) ¢ satisfies Sen’s condition a: A C
A D B implies A - B. B implies ¢(B) N A C ¢(A).
(iii) 7 satisfies Preference for Informa- (iv) ¢ satisfies Informational Sen’s «:
tion: for all o and A, cA 7 A. c(cA)NACc(A).

Proposition 1 states that in Persuasion Representations, Receiver’s preferences and choices
satisfy standard rationality postulates if and only if one of two extreme cases holds: the
conflict between Sender and Receiver is either non-existent (u ~ v) or total (u ~ —uv).
To aid the discussion, note that if u ~ v, perfect information is Sender-optimal at all
menus, reducing the representation of 77 to U(A) := Y. o maxsea u(f.,), and that of ¢ to
c(A) = Uyeqargmax ;.4 u(f,). If u s —v, Sender chooses e (no information) at all menus,
reducing the representations to U(A) := maxyca U(f) and ¢(A) = argmax; 4 U(f).
Preference for Flexibility is the key axiom of Kreps (1979). In models such as Gul and
Pesendorfer (2001) or Strotz (1955), this axiom characterizes the case of no conflict (u ~ v).

Here, Preference for Flexibility permits the opposite case of total conflict. Intuitively, this
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Figure 4: Illustration of Proposition 1(iii) when u % v and u % —v. The menu consists of
three acts and Sender is indifferent between two of them regardless of beliefs. When no public
information is provided, Sender chooses information yielding posteriors at i’ and fi; = 1;
for Receiver, the corresponding value is given by the upper red dot. If public information
generating posteriors at i’ and fi” is provided, Sender chooses not to provide any additional
information: doing so can only decrease payoffs (strictly so at posterior ). Consequently,
Receiver’s payoff decreases.

is so because temptation influences choice only via information provision. When u ~ —uv,
Sender chooses no-information at all menus; this reduces Receiver’s behavior to standard
expected-utility maximization, which satisfies Preference for Flexibility.

Preference for Information requires that public information never harms Receiver. Note
that since A C oA, this condition is implied by Preference for Flexibility; Proposition 1
establishes that for Persuasion Representations, it is in fact equivalent to Preference for
Flexibility. The condition is satisfied by the u ~ —wv case since this reduces the represen-
tation to expected-utility maximization and, by Blackwell (1951,1953), the value of every
decision problem increases with the availability of information. The u ~ v case also satisfies
Preference for Information since the representation reduces to U (Receiver’s value under per-
fect information) making 0 A ~ A for all A. It is less obvious that menus A and experiments
o satisfying A = oA exist when u % v and u % —v. As illustrated in Figure 4, the idea is
that Sender may choose to provide nontrivial information ¢ at A but, under some public o
less-valuable to Receiver than &, be unwilling to provide any information.?®
The fact that public information can harm Receiver via its effect on Sender’s incentives

has parallels in game theory, where being informed need not result in better equilibrium

25The example in Figure 4 is non-generic in that it relies on Sender being indifferent between two acts at
all beliefs. This is for expository convenience. One can construct similar examples that do not involve such
indifference, but it is more tedious to verify that they satisfy the desired properties.

24



outcomes for the informed player. Proposition 1 demonstrates that, for Receiver, such con-
cerns vanish only in extreme cases and that public information is never harmful if and only
if flexibility is never harmful.

Conditions (ii) and (iv) provide choice-correspondence analogues of Preference for Flex-
ibility and Preference for Information, respectively. Condition (ii), Sen’s v (Sen, 1971), is a
basic property of rational choice; since the menus referenced by the axiom are C-comparable,
the axiom constrains choice patterns that can arise under increased flexibility. Condition (iv)
weakens Sen’s a by requiring the original axiom to hold only when the increased flexibility
is due to the availability of public information; nonetheless, the Proposition establishes that
it is equivalent to Sen’s « in Persuasion Representations. It is important to note that while
Sen’s « is equivalent to Preference for Flexibility in terms of the impact on u and v, Per-
suasion Representations of 7~ involve sophistication (correct forecasting of future behavior)
while representations for ¢ do not. In this sense, Sen’s « is a more robust test of the edge
cases u ~ v than Preference for Flexibility; similarly, Informational Sen’s « is more robust
than Preference for Information.

Simple axioms characterize the u ~ v and u ~ —v cases. For any menu A and state w,
let A, :={f.,:f € A}. An experiment o is interior if 0 < s, < 1 for all s € 0 and w € .

Proposition 2. Suppose (u,u,v) represents 77, and c¢. Then u =~ v if and only if any of the

following conditions hold:

(i) 7= salisfies Preference for Statewise (i1) ¢ is monotone in statewise flexibil-
Flexibility: A, 2 B, for all w implies ity: A, D B, for all w implies
Az B. c(A) Cc(AUB).

(11i) 7, is indifferent to information: for (iv) ¢ is invariant to imperfect infor-
all A and o, A ~ g A. mation: for all A and interior o,
c(cA) = c(A).

Proposition 2 characterizes the u ~ v case in terms Receiver’s preferences for, and choices
under, increased flexibility or information. Condition (i) requires Receiver to prefer menus
that offer more flexibility (more potential lotteries) in each state; this condition implies, but is
not equivalent to, Preference for Flexibility. The analogous requirement for ¢, condition (ii),
is that any act chosen at A is also chosen after expanding A in a way that does not expand
the set of possible lotteries in any state. Intuitively, Sender chooses perfect information when
u =~ v, so Receiver’s behavior is not affected by additional options unless they expand the

set of possible lotteries in some state. Conditions (iii) and (iv) capture the idea that public
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information has no impact on Receiver’s welfare and choices when u ~ v; again, this holds

because Sender chooses perfect information when there is no conflict with Receiver.

Proposition 3. Suppose (p,u,v) represents = and c. Then u ~ —v if and only if any of

the following conditions hold:

(i) 7= is Independent of Irrelevant Alter- (ii) ¢ satisfies WARP: ¢c(A)NB # 0 im-
natives: A 75 B implies A ~ AU B. plies c(B)N A C ¢(A).
(iii) - satisfies Preference for Information (iv) ¢ satisfies Informational Sen’s «
and 0 A~ A for some A and o. and c(cA) # c¢(A) for some A and
interior o.

Parts (i) and (ii) of Proposition 3 establish that familiar axioms—IIA for 72, WARP for ¢—
characterize the u &~ —uv case. Traditionally, these axioms ensure 2~ and ¢ can be represented
by maximization of a menu-independent utility function. In Persuasion Representations, this
is consistent with u &~ —v because Sender’s resulting choice of no-information at all menus
reduces Receiver’s behavior to standard expected utility maximization. Parts (iii) and (iv)
characterize u &~ —v in terms of behavior under public information. In particular, satisfying
Preference for Information or Informational Sen’s o non-trivially is necessary and sufficient
for u &~ —v in Persuasion Representations. As noted in the discussion of Proposition 1, the
characterizations involving ¢ do not require sophistication on the part of Receiver, making
them more robust tests; the same holds for Propositions 2 and 3.

For condition (iv) in each of Propositions 1-3, some care is needed in the interpretation
of ¢(cA). Recall that 0 A merely simulates an environment where the choice set is A and
Receiver observes a signal generated by o in addition to that provided by Sender. To
understand the difference, consider Example 2 above with public information o* (perfect
information). There, Receiver chooses (fi,gs) from oA. Intuitively, perfect information
leads Receiver to choose f in state 1 and ¢ in state 2. Thus, both f and g would be chosen
from A with perfect public information, but only (f1, g2) is chosen from the menu o A.

To translate ¢(cA) into a statement about choices from A under public information o,
two additional definitions are needed. For any A and o, let c4(0cA) :={f € A:3) _ sf° €
c(cA) and s € o such that f* = f} denote the projection of ¢(cA) to A. For an experiment
o, let supp(o) := {ﬁ : s € o} denote its support. With this notation in place, the above

characterizations involving choice data under public information can be re-formulated as:

Proposition 4. Suppose (u, u,v) represents c. Then:
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(i) u v oru= —v if and only if ¢ is expansive in signals: supp(c) C supp(c’) implies

ca(cA) Cca(d’A) for all A.
(11) u v if and only if, for all A and o, c¢(A) = ca(cA).

(i1i) u =~ —v if and only if ¢ is expansive in signals and c(A) # ca(cA) for some A and o.

Proposition 4 characterizes the extreme cases of Sender-Receiver conflict in terms of choices
from A (not o A) under public information o. Part (i) states there is either no conflict or
total conflict if and only if expanding the set of posteriors induced by the public structure
results in a larger set of acts being chosen from A. Parts (ii) and (iii) differ in whether
this expansiveness property holds trivially or non-trivially: there is no conflict if and only
if choices are unresponsive to public information, and there is total conflict if choice data is

non-trivially expansive in public information.

4.2 Measures of Conflict

The characterizations in the previous section establish key relationships between Receiver’s
ex-ante value of (and ex-post choice under) flexibility and public information but are limited
to extreme cases (u ~ v or u &~ —v) regarding the conflict between the agents. This section

develops finer comparisons between Sender and Receiver.

Definition 5. Let u,v,v be utility indices. Then ¢ is more u-aligned than v (and v is

less u-aligned than 0) if either u ~ —v or v =~ au + (1 — a)v for some « € [0, 1].

Definition 5 is the key definition of Ahn et al. (2019). Intuitively, a mixture v ~ au+(1—a)v
more closely resembles u than v does. So, holding u fixed, a Sender with index v “disagrees
less” with Receiver than a Sender with index v, softening the conflict between the agents.
The aim of this section is to characterize more- or less-aligned utilities in terms of Re-
ceiver’s value of, and choice under, increased flexibility or public information. To begin,

consider the following comparative notions for menu preferences:

Definition 6. Let =~ and ?; denote preferences on A.

(i) i values flexibility more than > if, for all A O B, A = B implies A =~ B.

(ii) i values information more than - if, for all A and o, 0 A = A implies 0 A = A.

The idea of Definition 6 is that one agent (represented by E/) values flexibility more than

another (represented by 77) if there are more instances where he strictly prefers an expanded
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Figure 5: Illustration of Proposition 5(i). When no public information is provided, both
Sender preferences (green and blue curves) result in no additional information provision;
consequently, Receiver’s payoff is the lower of the two red dots. Consider a public structure
generating posteriors at ' and i1 = 1. The more-aligned Sender utility (green curve)
compels Sender to provide additional information, yielding posteriors at fi; = 0, i, and ji; =
1, increasing Receiver’s payoff to the higher red dot. However, the less-aligned Sender utility
(blue curve) results in no additional information provision. Thus, less-aligned preferences do
not increase Receiver’s value of public information.

option set. Similarly, he values information more than the other agent if there are more
instances where he strictly benefits from public information. Since A D A, an agent who

values flexibility more than another necessarily values information more than the other.

~)

Proposition 5. Let (p,u,v) and (p,u,v) represent 7, and = respectively.

(i) Ifi.j values information more than =, then ¥ is less u-aligned than v is. However, the

converse does not hold.

(i1) If ?\j values flexibility more than =, then v is more u-aligned than v is and ?\j values

information more than 77, does; consequently, v ~ v.

Part (i) of Proposition 5 states that if Receiver’s value of public information increases,
then there is greater conflict between the agents. Intuitively, the change in value reflects
Receiver’s expectation that Sender provides less information when there is greater conflict.
However, the converse does not hold: less-aligned preferences do not guarantee that Receiver
values information more in the sense of Definition 6. Figure 5 provides an example where
v = %u + %v Proposition 6 below provides a finer condition that fully characterizes the
degree of preference alignment in terms of Receiver’s value of public information.

Part (ii) of Proposition 5 establishes that if Receiver’s value of flexibility increases, then
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utilities become more aligned. However, as noted above, increased value of flexibility implies
increased value of information; by part (i), then, utilities also become less aligned. Since © is
both more and less u-aligned than v, it follows that © ~ v. Thus, Definition 6(i) is too strong

to characterize finer changes to the degree of conflict. The next result provides a remedy.

Proposition 6. Let (u, u,v) represent 77, and (u,u,v) represent z Then v is less u-aligned

than v is if and only if any of the following conditions hold:
(i) If f = A, then f = A.

(ii) If f ~0A = A and f € oA, then cA = A.

Proposition 6 modifies Definition 6 to provide full characterizations of utility alignment in
Persuasion Representations. Part (i) establishes that utilities are less-aligned if there are
more instances where full commitment (to a specific act) is preferred to a given menu A.%¢
This captures the intuition that increased conflict lowers Receiver’s expected payoff at A,
enlarging the set of commitment options f that are preferred to playing the game with the
full set A. Put differently, the result states that the concept of more-aligned utility fully
characterizes the comparative statics of Receiver’s welfare in persuasion games: his expected
payoff increases at all menus if and only if utilities become more-aligned.

Part (ii) refines Definition 6(ii) to require that 0 A = A if A = A and f ~ oA for some
f € 0dA. In a Persuasion Representation, the latter requirement means f is prior-optimal
at 0 A, indicating Sender does not provide helpful additional information beyond the public
structure .27 In this sense, the public structure is “binding”; for a less u-aligned index v, o
is also binding: f ~ oA if A = A. Thus, part (ii) states there is greater conflict if and only
if, for any A, there is a larger set of binding information structures that benefit Receiver.

To conclude this section, the next result characterizes the comparative statics in terms

of choice data c.

Proposition 7. Let (u,u,v) represent ¢ and (u,u,v) represent ¢. The following are equiva-

lent:

(i) © is less u-aligned than v is.

(i1) If c(A) = f, then ¢(A) = f.

26 Although f is not required to be an element of A, the characterization holds even if one imposes this
restriction.

2"Sender may be providing non-trivial information at ¢ A to increase his own payoff, but cA ~ f € oA
indicates Receiver does not benefit; eg, Receiver’s prior-optimal act remains optimal at every posterior
generated by Sender, so Receiver does not benefit but Sender may due to tie-breaking selections.
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(iii) If c(cA) = f, then ¢(cA) = f.

To understand Proposition 7, observe that ¢(A) = f implies f is prior-optimal for Receiver
at A. This means Sender discloses no information at A, indicating substantial disagreement
regarding the value of outcomes generated by acts in A. In line with this intuition, the
proposition states there is greater conflict between the agents if there are more menus where
Receiver chooses only the prior-optimal act. For (iii), the logic (and proof) is almost identical
but the result provides a different way of eliciting the relationship: given A, public informa-
tion o is binding (similarly to the discussion above) if it makes Sender choose not to disclose
any additional information. The proposition thus states that preferences are less-aligned if

and only if, for every A, the set of binding experiments expands.

4.3 Naivete and Sophistication

A central question—and the subject of ongoing research—concerns not just whether indi-
viduals experience temptation but whether they are sophisticated about (or aware of) their
self-control problems. O’Donoghue and Rabin (1999,2001) contrast naivete and (partial or
full) sophistication in settings of present-biased choice; since then, numerous studies have
found support for partial sophistication in a variety of contexts.?® In this section, I develop
comparative notions of sophistication and naivete for Persuasion Representations, with a
focus on two types of naivete: optimism and pessimism.

My approach builds on Ahn et al. (2019), who compare ex-ante preferences 7~ between
menus to ex-post choices from menus. The idea is that the function v revealed by 7 reflects
Receiver’s beliefs about Sender’s preferences while that revealed by (say) A reflects Sender’s
actual preferences; if these do not match, Receiver is (at most) partially sophisticated.

State-contingent random choice data A is ideal for such comparisons. Given A and A, let
A =00 geA M1(9) 9w )weq; this is the state-contingent lottery generated Receiver’s choices A
at A, and if A has a Persuasion Representation it coincides with the induced act generated by

composing Sender’s chosen information structure with Receiver’s signal-contingent choices.
Definition 7. Given )\, preferences = are sophisticated if A ~ f4* for all A.

The idea of Definition 7 is that ), and therefore f4*, reflects what actually happens at A
while >~ captures Receiver’s ex-ante expectations about behavior at A. If A ~ f4, there is

no disconnect between expectations and reality: Receiver’s ex-ante value of A coincides with

28There is a substantial literature investigating naivete and sophistication in lab and field settings; recent
contributions include Cobb-Clark et al. (2024), Carrera et al. (2022), and Allcott et al. (2022).
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the value of the induced act generated by subsequent behavior at A. Thus, sophistication

(or lack thereof) is a property of = given some \.2

Proposition 8. Let (u,u,v") represent - and (p, u,v) represent X\. Then 7 is sophisticated

if and only if v/ =~ v.

Proposition 8 verifies the intuition that a sophisticated Receiver holds correct beliefs about
Sender’s utility function: when 7~ and A have Persuasion Representations with common
Receiver parameters (p,u) but potentially different Sender utility functions v' and v, re-
spectively, Receiver is sophisticated in the sense of Definition 7 if and only if v ~ v. The

remainder of this section studies the following two natural departures from sophistication.

are optimistic if A = f4 for all A. If instead

fAA = A for all A, preferences - are pessimistic.

Definition 8. Given )\, preferences 7

~Y

Optimistic Receivers err only in an optimistic direction: if their ex-ante belief regarding the
value of A differs from that of f4*, it is because they expect a better outcome than f4-.
Similarly, pessimistic Receivers err only in the opposite direction. The next result provides
a simple parametric representation of optimism and pessimism in persuasion models.

Proposition 9. Let (p,u,v) and (p,u,v') represent A and -

~?

respectively. Then:
(i) 7 is optimistic if and only if v’ is more u-aligned than v is.

(i) 7 is pessimistic if and only if v’ is less u-aligned than v is.

Proposition 9 formalizes the intuition that optimism and pessimism correspond to Receiver’s
beliefs v' about Sender’s utility being more or less u-aligned, respectively, than the true
utility v. Thus, the requirements of Definition 8 characterize tight conditions on parameters

in Persuasion Representations.

Proposition 10. Let (u,u,v) represent X while (p,w,v") and (p,u,0) represent =" and ,%,
respectively. Suppose =" and 7, are optimistic. Then ¥ is more u-aligned than v is (that is,

> is more optimistic than =) if and only if A =" fA* implies A = fAA.

Proposition 10 states that, conditional on being optimistic, increased optimism manifests as

more instances of A being strictly preferred to f4*. A symmetric result holds for pessimistic

29Ahn et al. (2019) define sophistication as A ~ ¢(A) for all A. As explained below, this definition does
not capture the desired behavior for Persuasion Representations.
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Figure 6: In (a), Sender strongly dislikes g (Receiver’s prior-optimal act in A = {f, g,h}),
prompting information provision with posteriors at ' and 4” and choices ¢(A) = {f, h};
Receiver’s payoff is the upper red dot. Deleting g from A makes Sender’s value function
concave, resulting in no information provision and lowering Receiver’s payoff to the lower
red dot. In (b), Sender’s preferences are mostly aligned with Receiver’s but Sender strongly
dislikes b’ (Receiver’s preferred act in state 1). Sender chooses information generating pos-
teriors at i; = 0 and ", yielding ¢(B) = {f’, ¢’} and Receiver payoffs at the lower red dot.
Deleting h' from B makes Sender’s value function convex, resulting in perfect information
and raising Receiver’s payoff to the upper red dot.

agents. This can be combined with the results of section 4.2 to establish, for example, that
increased pessimism means greater value of public information (more instances where o A is
preferred to A) and greater value of full commitment.

To conclude this section, it is worth noting that the definition of sophistication employed
by Ahn et al. (2019), A ~ ¢(A) for all A, does not capture the desired notion of sophistication
for Persuasion Representations. Specifically, if (u, u,v’) represents 77 and (i, u, v) represents
¢, then v ~ v' does not imply A ~ ¢(A) for all A. In other words, Receiver’s welfare is
affected by unchosen alternatives. Not only can A ~ ¢(A) fail, but the preference can go in
either direction: if v &~ v/, u % v and u % —v, there are menus A, B such that A > ¢(A) and
¢(B) = B. Figure 6 provides examples of such A and B.

5 Conclusion

This paper has developed a decision-theoretic analogue of the Bayesian Persuasion model in
terms of Receiver’s choices, preferences and welfare. The results establish that persuasion

interactions can be understood entirely from Receiver’s perspective: his behavior reveals all
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parameter values and, thereby, Sender’s (unobserved) choice of information. While Sender
has commitment power in choosing information, the framework is sufficiently rich to compare
and contrast two ways of leveling the playing field for Receiver: hard commitment and public
information provision. This leads to comparative static characterizations that, alongside the
identification results, answer new and basic questions about the persuasion framework.
The paper also develops an interpretation of the framework as an intrapersonal interac-
tion. Viewed this way, the model highlights the role of unobserved information acquisition
for agents who experience temptation or other competing motives and must justify choices
as consistent with their “true” objective. The identification results thus establish that stan-
dard choice data can reveal such motives as well as the endogenous, selective attention
they generate. My approach introduces elements of the popular self-signaling paradigm
into a decision-theoretic framework, enabling general comparisons between this and familiar
decision-theoretic models of intrapersonal conflict. Both the foundations (see the Supple-
mentary Appendix) and comparative statics are quite different when motivated attention is
in play—important considerations for theoretical and empirical research involving tempta-
tion, demand for commitment, the value of information, sophistication/naivete, or justifiable

choice.

A Proofs for Section 3

A.1 Proof of Theorem 2

Suppose - has a Persuasion Representation. It follows that the restriction of 2~ to singleton
menus is represented by subjective expected utility for some parameters (u, ). By standard
uniqueness arguments for the Anscombe-Aumann expected utility model, p is unique and u
is unique up to positive affine transformation.

To establish uniqueness of v, consider pg-bets A,, = {pEq, ¢Ep} where p is interior and
u(p) > u(q). If v(p) > v(q), Sender chooses perfect information and therefore p ~ A,,. If
v(p) < v(q), Sender chooses e (no information) and p > A,,. Therefore, the set {qg : p ~
A,y > q} coincides with {q : u(p) > u(q) and v(p) > v(q)}. Since p is interior, this set is a
region in AX bounded by two planes: the indifference planes through p for v and v. Since u
has been identified in the first step above, this reveals the indifference plane for v through p.
The direction of increasing utility for v is also revealed by definition of the latter set. Thus,

v is identified up to positive affine transformation.
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A.2 Proof of Theorems 3 & 4

First, suppose a correspondence ¢ has a Persuasion Representation. To identify u, consider
menus A = {p,q} of constant acts; for such menus, we have p € c({p,q}) & u(p) >
u(q) or [u(p) = u(q) and v(p) > v(q)]. Consequently, u(p) > u(q) if and only if there is a
neighborhood around ¢ such that p € ¢({p, ¢'}) for all ¢’ in the neighborhood. Given p, then,
the set of such ¢ reveals the strict lower contour set of u through p, thereby revealing u up
to positive affine transformation.

To identify v, consider pg-menus A where u(p) > u(q); this means that for every f €
A, there is a signal s/ such that f, = s/p + (1 — sf)g. Observe that if v(p) > v(q),
Sender chooses perfect information at A and so ¢(A) = ¢(A) := U,,cqargmax;c 4 u(f.). If
v(p) < v(q), Sender chooses e (no information) and so c¢(A) = c(A) := argmax;., U(f).
Given u(p) > u(q), it is straightforward to construct pg-menus A where ¢(A) # c¢(A) and
c(A) = ¢(A) < v(p) > v(q); for example, there is a pg-menu A where there is a unique
prior-optimal act f¢ (that is, U(f¢) > U(g) for all ¢ € A) and, for each state w, a unique
act f* € A such that f* = p, making this act the unique optimal choice in state w. Thus,
c(A) ={fY weQ} #{f} = c(A). Having identified u, then, such menus reveal the set
{q : u(p) > u(q) and v(p) > v(q)}; by the argument in the proof of Theorem 2 above, this
reveals v up to positive affine transformation.

To identify pu, consider once again pg-menus A where u(p) > u(q). Suppose u % v.
Then there exists g such that v(g) > v(p); consequently, there exist pg-menus A such that
c¢(A) = ¢(A). Normalize u(p) = 1, u(q) = 0 and consider a pair of states £ = {w,w'}
where w # w’. To pin down the ratio 5—‘” consider a pg-menu A where all f, f" € A satisfy
fo= f.forall ¢ E (that is, there exists an act h = s"p+ (1 —s")q such that, for all f € A,
f = fER). Since ¢(A) = c(A), it follows that f € c¢(A) < f € argmax ¢ 4 87t +(1—57,) pto-
Thus, f,g € c(A) < (s, — s9)pw = (s, — s/, . Appropriate choices of A thereby

w

pin down % For example, letting ¢ = h = 2p + 2q, one can elicit s/,s’, such that

w’w

c({f,g}) = c({f.g}) = {[. g} revealing (s — D), = (3 — 5!, )1y, Repeating this procedure
for all pairs of states pins down all likelihood ratios and, therefore, pins down w. This

completes the proof of Theorem 4.

For Theorem 3, suppose p has a Persuasion Representation. Uniqueness of u and v follows
from the argument for ¢, as does identification of u if u % v. So, suppose u ~ v and let
u(p) > u(q). Then v(p) > v(q) and Sender chooses perfect information at all pg-menus A.
In particular, for each state w, consider a pg-bet A = {pFEq,qEp} where E = {w}. Since
Sender chooses perfect information, it follows that p?(pEq) = p,,, pinning down .
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B Proofs for Section 4.1

Lemma 1. Let u,v be non-constant utility indices such that u % v and u % —v. For any pair
of vectors (uy, ..., ux), (vi,...,vx) € RE there is a set {p1,...,px} € AX and constants
A >0, B,C €R such that, for allk =1,..., K, u(py) = Augp + B and v(py) = Avyp + C.

Proof. Observe that AX can be identified with a subset of R¥~! (namely, the unit simplex
in RY). Since u,v are non-constant linear functions on AX C R¥~1  their domains extend
to all of RV~! via linearity. For every k, the values u; and v, correspond to unique level
sets (planes) of u and v in R¥~1 respectively; since u % v and u % —v the normal vectors
of these planes are linearly independent. Thus, for every k, there is a point 2¥ € RN-!
such that u(z*) = ug and v(2*) = vy. Pick a lottery p in the interior of AX. There is a
scalar a € (0,1) sufficiently close to 1 such that, for all k, ap + (1 — a)zF € AX; letting
pei=ap+ (1 —a)zf, A:=(1-a), B:=au(p) and C := av(p) completes the proof. O

The significance of Lemma 1 is that it allows acts and menus to be constructed by selecting
utility values for Receiver independently of the values for Sender when u % v and v % —v. In
particular, acts can be defined by specifying arbitrary profiles of utilities (uy,)weq and (v,,)weq
(not necessarily in the range of u or v) and applying the lemma to obtain f = (f,)weq such
that, for all w, u(f,) = Au, + B and v(f,) = Av, + C. More generally, menus are obtained
by first specifying (for each act in the menu) utility profiles for Sender and Receiver and
then applying the lemma to the full set of profiles—each act requires |Q2] = W lotteries, so a
menu of M acts requires K = MW lotteries. This way, the same constants A > 0, B,C € R
apply to every act, so in the resulting menu it is as if agents compare acts with the desired
utility profiles. This simplifies the construction of many examples since value-function (or

concavification) arguments only depend on the utility profiles, not the underlying lotteries.

B.1 Proof of Proposition 1

Proof of u = v oru~ —v < (i). If u= v, then at every B Sender chooses perfect informa-
tion; consequently, in every w, both agents receive their most-preferred lottery in B,. If
B C A, then the best outcome in each state can only improve under menu A. Thus, A = B.
If instead u &~ —wv, then e (no information) is Sender-optimal at every menu A; consequently,
Receiver chooses their prior-optimal act(s) from A. Thus, 7 reduces to a standard expected
utility preference and therefore satisfies Preference for Flexibility.

For the converse, suppose u % v and u % —wv. Then, as is easily verified, there exist
lotteries p,q,r such that u(p) > u(r) > u(q) and v(r) > v(p) > v(q). Let E #  be a
nonempty subset of Q and B = {pFq, ¢Ep}. Since Sender and Receiver agree on the ranking
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of p and ¢, it follows that Sender chooses perfect information at menu B, yielding lottery p
in every state. Thus, U(B) = u(p).

Now let A = {pFq,qFEp,r}. Clearly, A D B. We may choose r so that r is prior-optimal
for Receiver in menu A; in particular, U¢(pFEq) and U¢(¢Ep) belong to the open interval
(u(q),u(p)) because u(E) € (0,1). Thus, we may choose r near p (without reversing any
inequalities above) so that U¢(r) > max{U¢(pFEq),U¢(¢Ep)}, making r prior-optimal for
Receiver in menu A. Since v(r) > v(p) > v(q), it follows that e (no information) is Sender-
optimal at A (more generally, any Sender-optimal ¢ must yield Bayesian posteriors making
r Receiver-optimal). Thus, outcome r is realized with probability 1, so that U(A) = u(r) <
u(p) = U(B), violating Preference for Flexibility. O

Proof of u ~ v oru~ —v < (ii). First, suppose u ~ v or u ~ —v. If u =~ —wv, then (by
the argument in part (i) above) c is rationalized by expected utility maximization with
parameters (u,u) and therefore satisfies Sen’s a. If instead u ~ v, then (also by part (i)
above) for all A, we have ¢(A) = {f € A : Jw such that u(f,) > u(g,) Vg € A}. Let
f € ¢(B)N A where B O A. Since f € ¢(B), there exists a state, say w*, such that
u(fr) > u(ge) for all g € B O A. Thus, u(f,+) > u(g.) for all g € A. Since f € A, this
implies f € c(A).

The converse is established by way of contradiction. So, suppose u % v and u % —v.
Choose an event E such that 0 < u(E) < 1 and lotteries r,p,q,p’,q such that u(p’) >
u(p') > u(r) > u(q) > u(q), v(p) = v(q) > v(r) > v(p) = v(¢), and U¢(pEq) > u(r). Let
A = {pEq,r}. Then e (no information) is Sender-optimal at A because pEq is prior-optimal
for Receiver and v(p) = v(q) > v(r); thus, ¢(A) = {pEq}. Now let B = {pEq,p'Eq ,r}.
Observe that, for Receiver, p’ Eq' dominates pFEq. Thus, p' Eq’ is prior-optimal for Receiver;
pEq is not chosen by Receiver at any signal; and r is chosen by Receiver at some signals
because 0 < p(E) < 1 and u(p’) > u(r) > u(q’). Since v(r) > v(p’) = v(¢’), Sender selects
an information structure where both p’ ¢’ and r are chosen with positive probability; hence,
c¢(B) ={p'Eq,r}. Thus, r € ¢(B) N A but r ¢ ¢(A), violating Sen’s . O

Proof of u = v or u~ —v < (iii). First, suppose u ~ v or u &~ —v. By part (i), 7 satisfies
Preference for Flexibility. Since 0 A O A, it follows that c A = A.

For the converse, suppose u % v and u % —v. Consider first the case |2] = 2. Since u
has full support, we may construct (by Lemma 1) a menu A = {f, g, h} such that the value
functions are of the form depicted by Figure 4 in the main text. In particular, Receiver
finds f optimal on [0, /], g optimal on [/, i"], and h optimal on [i”, 1], where the prior u
satisfies i < p < [”. Sender is indifferent between g and h at all beliefs, prefers g (and h)
to f on [0,4], and f to g and h on [i”, 1], with indifference between all three acts at ji'.
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Figure 7: Ilustration of Proposition 1(iv).

Let ¢ be an experiment such that, given u, either posterior i or i = 1 is generated (such
an experiment exists because i’ < g < 1). Observe that, at menu A, Sender finds both e
and ¢ optimal because the concavification at i/, u, and i = 1 coincides with Sender’s value
function. By Receiver-preferred tie breaking, Sender chooses 6 as this yields the highest
Receiver payoff among all Sender-optimal structures at A. Now consider a public structure
o that generates posteriors at ' and fi”. Again, Sender’s values at these posteriors coincide
with the concavification. However, Sender now prefers e because any non-trivial information
structure creates a mean-preserving spread around both i’ and fi”; in particular, any such
spread around /i’ strictly lowers Sender’s payoff. Thus, Sender chooses e and Receiver’s value
at 0 A is the prior-value of g and, thus, lower than the value at A.

For the general case |Q2] > 3, let p be an arbitrary lottery, F = {w;,w>} and consider
the menu A’ := {fEp : f € A}, where A is a menu of the form constructed above for
the case |2] = 2; this can be done because p has full support. It is easy to see that
F(AY = {fEp : f € F(A)}. Thus, at A, Sender selects an induced act f*Ep, where
f* € F(A) is the induced act selected at A. Let ¢’ be an information structure generating
posteriors corresponding to ' and 4" in the 2-state construction above (conditional on F,
the posteriors coincide with 4’ and ") and that leaves i/, = 4 = p, for all w ¢ E.
Then F(o’A’) = {fEp : f € 0 A}, so Sender selects an induced act g*Ep € F(0’A’) where
g* € F(oA) is the induced act selected at 0 A. Thus, A" = o' A’. O

Proof of u~wv oru~ —v < (). First, suppose u =~ v or u ~& —v. By part (ii), ¢ satisfies
Sen’s a. Since 0 A D A, it follows that c¢(cA) N A C ¢(A), as desired.

For the converse, suppose v % v and u % —v. Consider first the case || = 2. Let
A ={f,g,h} be a menu such that Sender’s value function is of the form depicted in Figure

5 (this is possible via Lemma 1 and the fact that p has full support). Clearly, e is Sender-
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optimal at A and so ¢(A) = {h}. Consider the public structure o generating posteriors at
i and i = 1. Any additional information chosen by Sender generates a mean-preserving
spread around g’ but does not affect the point 4 = 1. Thus, Sender chooses information
& to achieve the value of the concavification at fi’; this requires ¢ to generate posteriors at
" and at 1 = 0. The latter posterior results in f being chosen. Thus, f € ¢(cA) N A but
f ¢ c(A). For the general case |2| > 3, apply the same technique as the proof of part (ii)
above to construct A" and o’ A" such that F'(A’) and F(0’A’) are isomorphic to the sets F'(A)
and F(cA) from the case || = 2. O

B.2 Proof of Proposition 2

Proof of u v < (1). Suppose u &~ v. Then, for every menu B, perfect information is
Sender-optimal because it yields u-maximal (hence v-maximal) lotteries from B, in every w.
If B, C A, for all w, then a maximal lottery in A, is maximal in A,UB,,. Thus, A ~ AUB.

Conversely, suppose u % v. Then there are lotteries p,q such that u(p) > u(q) and
v(q) > v(p). Let u(E) € (0,1) and A = {pEq,qEp}. Sender and Receiver strictly disagree
on the ranking of p and ¢, so Sender chooses e (no information) at A. Consequently, U(A) €
(u(q),u(p)) and V(A) € (v(p),v(q)). Let B = {p}, so that AU B = {pEq,qEp,p}. Then
p is a Receiver-optimal act in A U B regardless of Sender’s choice of information, implying
U(AU B) = u(p) > U(A); thus, A £ AU B. Since B, = {p} C {p,q} = A, for all w, this

contradicts Preference for Statewise Flexibility. m

Proof of u ~ v < (iii). Suppose u =~ v. Then, for every A, perfect information is Sender-
optimal and Receiver achieves a u-maximal lottery in A, for all w. Let u,, denote Receiver’s
utility of any w-maximal lottery in A,. Observe that, for every ¢ and w, Receiver again
obtains utility @, in state w at menu g A (perfect information remains Sender-optimal and
A CoA). Thus, A~ cA.

Conversely, suppose u % v. Then there are lotteries p,q such that u(p) > wu(q) and
v(q) > v(p). Let u(E) € (0,1) and A = {pEq,qEp}. As in the proof of u = v < (i)
above, this yields U(A) € (u(q),u(p)). Consider c*A. Since (p,...,p) € o*A, we obtain
U(c*A) =u(p) > U(A), so that A £ o*A. O

Proof of u v < (i). Suppose u =~ v. Then perfect information is Sender-optimal; conse-

quently, for all 121, we have
¢(A) = {f € A: 3w such that u(f,) > u(g,) Vg € A}.
Suppose B, C A, for all w and let f € ¢(A). Then there is a state w* such that u(f,«) >
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u(g,+) for all g € A; thus, u(f,«) > u(p) for all p € A,~. Since B,» C A, it follows that
u(for) > u(q) for all ¢ € B,«. Then u(f,+) > u(g,+) for all g € AU B, so that f € ¢(AUB).

For the converse, suppose u % v. As in the proof of u ~ v < (i) above, the menus
A ={pEq,qEp} and B = {p} satisty B, C A, for all w but lead to ¢(AU B) = {p}, so that
c(A) Z c(AU B). O

Proof of u = v < (iv). Suppose u ~ v. As in the proof of u ~ v < (ii) above, we have
c(A) ={f € A: Jw such that u(f,) > u(g,) Vg € A}

for all A. Let o denote an interior experiment. To see that c(A) C ¢(cA), first let f € ¢(A).
Then f € 0A and u(f,) > u(p) for all p € A,. Thus, for every w and h € oA, we have
u(f,) > u(hy) because h, is a mixture of lotteries in A,. Hence, f € ¢(cA). To establish
c(cA) C c(A), let f € ¢(cA). This means there is a state w* such that u(f,«) > u(hy~) for
all h € A D A; thus, u(f,+) > u(g.) for all g € A. So, it will suffice to show that f € A.
Let w € Q. A given lottery in (0A), 2 A, is a mixture of lotteries in A,. If f € cdA\A
and the mixture f,, assigns positive weight only to u-maximizers in A,, then o cannot be
interior: it must perfectly reveal state w. Thus, f € A.

For the converse, suppose u % v. Then there are lotteries p, ¢ such that u(p) > u(q) and
v(q) > v(p). Let u(E) € (0,1) and A = {pEq,qEp}. Let 0° = [s°,e — s°] where ¢, =1 —¢
forw € F and s;, = ¢ for w € Q\E. Then

0°A = {pEq,qEp, s°pEq + (e — 5°)qEp, s°qEp + (e — s°)pEq}
={pEq,qEp,(1 —e)p+eq,ep+ (1 —€)q}.

Observe that e (no information) is Sender-optimal at 0°A. Thus, for £ > 0 sufficiently small,
Receiver chooses (1 — ¢)p + £q. Thus, ¢(c°A) # c(A). O

B.3 Proof of Proposition 3

Proof of u ~ —v < (7). First, suppose u &~ —v. Then e (no information) is Sender-optimal
at every menu A, so that Receiver chooses the prior-optimal act (according to u) from A.
Thus, 77 reduces to a standard expected utility preference and, consequently, satisfies ITA.
Conversely, suppose u % —v. Then there are lotteries p, ¢ such that u(p) > u(q) and
v(p) > v(q). Let A= {pEq} and B = {gEp} where 1 > pu(E) > 1. It follows that U(A) =
U¢(pEq) > U¢(¢Ep) = U(B), so that A = B. However, at menu A U B, perfect information
is Sender-optimal because it yields lottery p in every state. Thus, U(AU B) = u(p) > U(A),
so that AU B = A, contradicting ITA. O
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Proof of u ~ —v < (iii). First, suppose u ~ —v. By Proposition 1, 7~ values information:
oA 7z A for all 0 and A. Moreover, e (no information) is Sender-optimal at all menus
A, so Receiver is indifferent between A and any U¢-optimal act f € A. Consider a menu
A = {pFq,qFEp} where 0 < u(E) < 1 and u(p) > u(q). Then ¢*A ~ p = A, where o*
denotes perfect information.

For the converse, suppose 0 A 7~ A for all 0, A and that there exist o, A such that ¢ A >~ A.
By Proposition 1, either u ~ v or u & —v. By Proposition 2, u % v because ~ is not

indifferent to information. Thus, u ~ —v. O

Proof of u = —v < (i1). If u & —wv, then Sender chooses e at every menu. Consequently,
Receiver’s choices are characterized by standard expected utility maximization and therefore
satisfy WARP.

For the converse, suppose toward a contradiction that c¢ satisfies WARP but v % —v.
By WARP, there is a complete and transitive relation 27 such that, for all fl, C(A) ={fe
A:fr gVge A}. Since u % —v, there are lotteries p,q,r such that u(p) > u(q) > u(r)
and v(p) > v(q) > v(r). Let E be a nonempty subset of Q and let f = rEp, g = r, and
h =pEq. In menu A = {f, g}, we have ¢(A) = {f, g} because Sender’s optimal information
structure reveals whether the true state belongs to E or Q\E and both acts are chosen at
states w € E. Thus, the rationalizing preference satisfies f ~ ¢g. In menu B = {g, h}, we
have ¢(B) = {h} because u(p) > u(q) > w(r) implies act g is never chosen by Receiver.
Thus, h > g. Finally, in menu C' = {f, h}, we have ¢(C') = {f, h} because Sender’s optimal
information structure reveals whether the true state belongs to £ or Q\E and h is chosen
for w € E while f is chosen for w ¢ E. Thus, f ~ h. Combining these facts, we have
g~ f > h > g, acontradiction. ]

Proof of u ~ —v < (iv). First, suppose u ~ —v. By Proposition 1, ¢ satisfies Informational
Sen’s a. Moreover, ¢(A) consists of all U¢-optimal acts in A because e (no information) is
Sender optimal in all menus. As in the proof of part (iv) of Proposition 2, let 0 < u(E) < 1
and 0° = [s°,e — s°] where s =1 —¢ for w € F and 55 = ¢ for w € Q\F; note that o°
is interior provided 0 < ¢ < 1. Then, for any A = {pFq, gEp} where u(p) > u(q), we have
0°A = {pEq,qEp,(1 —e)p+eq,ep+ (1 —€)q}. Observe that if € > 0 is sufficiently close to
0, then (1 — €)p + eq is U%-optimal in 0°A. Thus, ¢(6°A) = (1 —e)p+eq ¢ c(A). O

B.4 Proof of Proposition 4

(i) First, suppose u ~ v. Then perfect information is Sender-optimal at all menus B,
yielding ¢(B) = {f € B : 3w u(f,) > u(gn) Vg € B}. For B = 0A, acts f € 0 A are
of the form f=>"___ sf® (f° € A); consequently, u(f,) > u(g,) for all g € 0 A if and

sco
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(i)

(iii)

only if u(D_ ., 5uf3) > uX sep 5w9s) V9° € A (s € 0). Thus, f =3 _ sf°€c(cA)
if and only if there is a state w such that u(f2) > u(g,) for all s € o and g € A. This
implies c4(cA) = c(A).

If u ~ —v, then e (no information) is Sender-optimal, yielding ¢(B) = {f € B :
U(f) > U(g) Yg € B}. For B = ¢A, this implies c(cA) = {f = > .., sf° € dA:
Vs € o, U(f%) > Us(g) Vg € A}; thus, f € ca(cA) if and only if there exists
s € o such that U*(f) > U*(g) for all g € A. Suppose supp(c) C supp(c’) and let
f € ca(cA). Then there exists s € o such that Us(f) > U*(g) for all g € A. Since
supp(co) C supp(c’), there exists s’ € ¢’ such that s and s’ yield the same Bayesian

posterior. Thus, U% (f) > U¥ (g) for all g € A as well, so that f € c4(c’A).

For the converse, suppose ¢ is expansive in signals. Suppose toward a contradiction
that u % v and u % —v. Consider the case || = 2 (this case extends to the general case
via the arguments used in the proof of Proposition 1). Consider a menu A = {f, g, h}
with value function depicted in Figure 8; such a menu exists by Lemma 1. Sender
is indifferent between g and h at all beliefs, strictly prefers f on g} < i < 1, and
strictly prefers g (and h) on 0 < fi; < [/, with indifference between all three acts
at [i. Let o = e (so the only posterior it generates is the prior x) and ¢’ be an
information structure generating posteriors at p, ii', and i”. At o, Sender chooses (due
to Receiver-preferred tie breaking) additional information so as to induce posteriors at
i/ and i = 1. Consequently, ca(cA) = {f,g,h} because h is chosen at i = 1 while
f and g are chosen at /. At ¢’A, Sender chooses no additional information (each
posterior yields a point on the concavification, and creating spread around /i’ strictly
decreases Sender’s payoff); consequently, h ¢ ca(0’A) because no posterior induced by

o’ makes Receiver choose h. Thus, supp(o) C supp(c’) but c4(cA) Z ca(c’A).

First, suppose u ~ v. As demonstrated in the proof of (i), this implies ¢(A) = ca(cA)
for all A and o. Conversely, suppose u % v. This implies there are lotteries p, ¢ such
that u(p) > u(q) and v(q) > v(p). Let A= {sp+ (1 —s)q,tp+ (1 —t)q} be a pg-menu
where Receiver has a unique prior-optimal act, say sp + (1 — s)q. Let 0 = o* (perfect
information). Then ¢(A) = sp + (1 — s)q but ca(cA) = A.

Suppose u ~ —v. By (i), ¢ is expansive in signals and by (ii), ¢(A) # ca(cA) for
some A and o (in particular, v and v are non-constant, so u ~ —v implies u % v).
Conversely, (i) and (ii) imply u &~ —v if ¢ is expansive in signals and c(A) # ca(cA)

for some A and o.
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Figure 8: Ilustration of Proposition 4(i).

C Proofs for Sections 4.2 and 4.3

Given utility indices u and v, a pair {p,q} of lotteries is a (u,v)-agreement pair if ei-
ther [u(p) > u(q) and v(p) > v(q)] or [u(q) > u(p) and v(q) > v(p)]; otherwise, it is a

disagreement pair.

Lemma 2. Let u,v,v' : X — R be non-constant utility indices such that u % —v and
u % —v'. Then every (u,v)-agreement pair is a (u,v')-agreement pair if and only if v' is

more u-aligned than v.

Proof. 1t is straightforward to show that if v' is more w-aligned than v, then every (u,v)-
agreement pair is a (u,v’)-agreement pair.

For the converse, let u, v, v' be non-constant utility indices such that u % —v and u % —v’;
interpret them as vectors u = (uy,...,uy), v = (vy,...,zy), and v/ = (v},...,v}) in RY
where X = {x1,...,2n}.

Let Z == {6 € RY : 3" 4, = 0}; this is a hyperplane in RY with normal vector
(1,...,1). Observe that for every utility index u’, there exists & € Z representing the
same expected utility preferences; in particular, letting B = Ziv:l u,,, the index @ where
U, = u,, — B/N is a member of Z and a positive affine transformation of «’. Thus, every
expected utility preference over AX is represented by an index in Z. Since scaling an index
by a positive number does not affect expected utility preferences, we normalize the non-zero
vectors in Z to length 1 by letting C' := {ﬁ : 0 # 4 € Z}. Thus, every non-constant
expected utility preference over AX is represented by a unique vector in C.3°

Observe that if u,v,v" € C, then v" = au + (1 — a)v for some « € [0, 1] if and only if
the vector v' belongs to the conic hull Cy, == {fu+~yv: 5 >0,y > 0} C Z of u and v.

30This method of normalizing the set of utility indices is due to Dekel and Lipman (2012).
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Suppose v' % au + (1 — a)v for all a. Since C,, C Z and Z is isomorphic to R¥ =1 Farkas’
lemma implies there is a vector y € Z such that v'-y <0 and 4 -y > 0 for all u € C,,; in
particular, v -y > 0 and v -y > 0.

Let ¢ = (%,...,%) € AX (that is, g(z) = & for all z € X). Letting p = ¢ + v,
we have 25:1 Dn = 25:1 Gn + yn = 1 since ¢ € AX and y € Z; if necessary, replace y
with dy for sufficiently small 6 > 0 (this does not affect any inequalities above) to ensure
Pn = Gn + yn € [0,1] for all n. Thus, p € AX as well. It follows that 0 <wu-y=u-(p —q),
so that w-p > w-q. Similarly, v-p > v - q, so {p,q} is a (u,v)-agreement pair. However,
0>v-y=v"-(p—q),sothat v'-p < v -q. Since u, v and v' are linear functions and p, q
satisfy w -p > u-qand v-p > v - ¢, we may perturb p and ¢ to ensure u - p > u - ¢q (and
v-p>wv-q) without violating v' - p < v’ - ¢. Thus, {p, ¢} is not a (u,v')-agreement pair. [J

Lemma 3. Suppose (u,u,v) and (u, u,v") represent =~ and 7', respectively. Let U, U" : A —

~ 7

R denote the corresponding functions of the form (2) induced by these parameters. Suppose v’
is more u-aligned than v. Then U'(A) > U(A) for all A and U'(B) = U(B) for all singleton

menus B.

Proof. We have v' =~ au+ (1 — a)v for some a € [0, 1]. Since parameters (u,u) are common
to the representations of 7~ and 2=’, both involve the same set F'(A) of induced acts; that is,
for all A,

U(A) = maxU*®(f) subject to f € argmax V (f’)
f'eF(4)

and

U'(A) = max U®(g) subject to g € argmax V'(¢'),
g'cF(A)

where V, V' : F' — R are expected utility with prior x and indices v and ', respectively, and
U¢: F — R is expected utility with prior g and index w. Clearly, then, U'(B) = U(B) for
all singleton menus B.

Let A be an arbitrary menu. The claim is trivial if & = 0, so suppose a > 0. Suppose
f € argmax g V(f') and g € argmax e aU(g') + (1 — a)V(g'); thus, ¢’ maximizes
V'~ aU®+ (1 —a)V on F(A). Then

alU(g) + (1 = a)V(g) = aU(f)
>aU(f)+ (1 —a)V(g) since f maximizes V on F'(A),

_|_
=
|
L
<
=

since g maximizes V' on F(A)

which implies aU¢(g) > aU®(f) and thus U¢(g) > U®(f) since a > 0. Since f and g are
arbitrary maximizers of V' and V’, respectively, this implies U'(A) > U(A). O
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C.1 Proof of Proposition 5

(1)

Let A be a pg-bet where u(p) > u(q) and v(p) < v(g). Then Sender chooses no informa-
tion at A, so 0*A = A. Since 2~ values information more than -, this implies 0* A = A,
so v(p) < v(q) as well. Thus, every disagreement pair for u,v is a disagreement pair

for u,v. By Lemma 2, this implies v is less u-aligned than v is.

To see that the converse does not hold, consider Figure 5. There, a menu A = {f, g, h}
is constructed so that Receiver chooses f on 0 < i < i/, gon i/ < i < fi”, and h
on i < i < 1, making Sender’s value function concave under ¢ (by Lemma 1, such
a menu exists). Consequently, Sender (under v) chooses no information at A, so that
Receiver’s ex-ante value of A is given by the lower of the two red dots. Let ¢ be an
experiment generating posteriors at ,ll/ and i = 1. Again, concavity of Sender’s value
function under v implies no additional information is chosen; thus, cA ~ A. Now
consider Sender utility v &~ au + (1 — a)v. For appropriate values of « (in the figure,
o= %), no-information remains Sender optimal at A while non-trivial information is
optimal at 0 A. In particular, Sender’s value function under v is convex around [/,
so Sender selects information ¢ generating a mean-preserving spread of the point i’
to i = 0 and g, as indicated by the arrows in the figure (additional information
has no impact on the other posterior, it = 1, generated by ¢ since it is a degenerate
distribution). This structure is Sender-optimal at A because it raises Sender’s payoff at
i’ to the point on the concavification at 4’. This information structure raises Receiver’s
payoff conditional at ji’ as well which, in turn, raises his overall payoff at A to the
higher of the two red dots. Thus, v is less u-aligned than v is but ,Ej does not value

information more than 77 because 0 A > A while 0 A ~ A.

Suppose ,é values flexibility more than 7Z. Let p,q be an agreement pair for u,v and
A = {pEq,qEp} a pg-bet. If u(p) = u(q), then p,q is automatically an agreement
pair for u,v. If instead u(p) # wu(q), suppose without loss that u(p) > u(q). Then
A = {pEq} (where pEq is Receiver’s prior-optimal act in A) and so A = {pEq} as
well. This implies the >-Sender chooses perfect information at A, and so p,q is an
agreement pair for u,v. Thus, every u,v agreement pair is a u,0 agreement pair,
making © more u-aligned than v (Lemma 2). However, ,>\j also values information more
than 7= because 0A DO A for all A and 0. Thus, by (i), v is also less u-aligned than v.

Consequently, v = v.
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C.2 Proof of Proposition 6

(i) Suppose v is less w-aligned than v is. Since the set of induced acts only depends on
w and wu, it follows from Lemma 3 that Receiver’s value of A under (u,u,v) weakly
exceeds that under (u,u,v). Thus, f 77 A implies f 7 A.

Conversely, suppose statement (i) holds and consider a pg-bet A where u(p) > u(q). Let
f € A denote i—Receiver’s prior-optimal act. Then A = f if and only if v(p) > v(q).
A similar result holds with v in place of v and > in place of >=. Therefore, statement
(i) (in contrapositive form) implies every agreement pair for u, ¢ is an agreement pair

for u,v. Lemma 2, then, implies v is more u-aligned than v is.

(ii) Suppose v is less u-aligned than v is and that f ~ 0A > A for some f € gA. This
implies f is prior-optimal for Receiver in oA and, thus, U-minimal in F(cA). Since
F(cA) only depends on p and u, Lemma 3 implies ,%—Sender selects a U-minimal act
from F(0A) as well. Thus, f ~ 0cA = A.

Conversely, suppose statement (ii) holds and consider a pg-bet A where u(p) # u(q). If
f ~ o0*A = A, then u, v disagree on the ranking of p, g. Condition (ii) implies 0*A = A,
which means u, v disagree on the ranking as well. Thus, every disagreement pair for

u,v is a disagreement pair for u, v; by Lemma 2, then, v is less u-aligned than v is.

C.3 Proof of Proposition 7

First, suppose v is less u-aligned than v is. If ¢(A) = f, then f is prior-optimal for Receiver,
so ¢-Sender must be choosing e (no information) at A. Since o is less u-aligned than v is, it
follows from Lemma 3 that ¢-Sender chooses e as well. Thus, ¢(A) = f.

Conversely, consider a pg-bet A. If ¢(A) = f, the c-agents disagree on the ranking of p, ¢;
by (ii), we have ¢(A) = f and so the ¢-agents disagree as well. Thus, every disagreement
pair for u,v is a disagreement pair for u,v. By Lemma 2, then, v is less u-aligned than v.

These argument for (i) = (ii) holds if one replaces A with 0 A for any o, establishing
(i) = (iii). For (iii) = (i), let A be a pg-bet and ¢ a non-perfect information structure. If
c(cA) = f, this implies p, ¢ is a u, v disagreement pair. By (iii), ¢(c A) = f, implying p, ¢ is

a u, v disagreement pair. By Lemma 2, then, v is less u-aligned than v.

C.4 Proof of Proposition 8

Clearly, 7~ is sophisticated if v' &~ v. Conversely, suppose = is sophisticated. There are three

cases:
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1. u~wv. Ifv' % v, there exist p, ¢ such that u(p) > u(q) and v'(p) < v'(q); a correspond-
ing pg-bet A yields p > A since a Sender with preferences v’ chooses no information in
this case. But sophistication together with u ~ v implies A ~ f{! = p for all pg-bets A

where u(p) > u(q), a contradiction.

2. u = —v. If v % v, there exist p,q such that u(p) > u(q) and v'(p) > V/'(¢); a
corresponding pg-bet satisfies p ~ A since a Sender with preferences v" chooses perfect
information in this case. But sophistication together with u ~ —v implies p = f ~ A

for all pg-bets A where u(p) > u(q), a contradiction.

3. us v and u % —v. Suppose v' % v. If v/ &~ u or v & —u, the argument from case 1
or 2 applies. If v/ % w and v" % —u, there exist p, g such that u(p) > u(q), v(p) > v(q),

and v'(p) < v'(q); now the argument from case 1 applies.

C.5 Proof of Proposition 9

We prove statement (i) (the proof for (ii) is similar). First, suppose v’ is more u-aligned
than v is. Let U’ : A — R denote Receiver’s value (Persuasion Representation) of - with
parameters (p,u,v'), and U : A — R Receiver’s value in a Persuasion Representation with
parameters (p, u,v). Then U'(f) = U(f) for all f and, by Lemma 3, U'(A) > U(A) for all A.
Suppose A # f. Then U'(A) # U'(f{) = U(f{) = U(A); thus, U'(A) > U(A) = U'(f{)
and so A = fi.

For the converse, suppose 2~ is optimistic. We show that every (u,v)-agreement pair is
a (u,v')-agreement pair; the desired result then follows from Lemma 2. Suppose toward a
contradiction that there exists a (u,v)-agreement pair {p, ¢} that is a (u,v’)-disagreement
pair. Without loss of generality, suppose u(p) > u(q); then v(p) > v(q) and v'(p) < v'(q).
Let A be a pg-bet. Then A-Sender chooses perfect information but —-Receiver expects -
Sender to choose no information; consequently, A % f = p. Since = is optimistic, we
have A = f{! = p; but p = A because A is a pg-bet and u(p) > u(q). Thus, {p,q} is a

(u,v')-agreement pair.

C.6 Proof of Proposition 10

Suppose v is more u-aligned than v'. Let U, U’, U denote Receiver’s values (utility represen-
tations of menu preferences) under parameters (u, u,v), (g, u,v"), and (i, u, v), respectively.
By Lemma 3, we have U(A) > U'(A) > U(A) for all A and U(f) = U'(f) = U(f) for all
f. Suppose A =" f{&. Then U'(A) > U'(f{) = U(f2) = U(A), so U(A) > U'(A) > U(A) =
U(f{) = U(f{). Thus, A= f{.
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For the converse, suppose A =" f{! implies A = f{!. We show that every (u,v')-agreement
pair is a (u,v)-agreement pair. So, let {p,q} be a (u,v')-agreement pair; without loss of
generality, assume u(p) > u(q) and v'(p) > v'(q). Let A be a pg-bet. There are two cases.
First, suppose {p, q} is a (u, v)-agreement pair. Since z is optimistic, {p, ¢} is also a (u, v)-
agreement pair (see the proof of Proposition 9). Second, suppose instead that {p,q} is a
(u, v)-disagreement pair. Then A =" f{! because A-Sender chooses no information but '
Receiver believes 7~'-Sender chooses perfect information since v'(p) > v'(q). By hypothesis,
it follows that A = f{. Since A is a pg-bet and {p, ¢} is a (u,v)-disagreement pair, this
implies A-Sender chooses no information but ?;:-Receiver believes ,%—Sender chooses perfect

information; thus, v(p) > 0(q), so that {p, ¢} is a (u, v)-agreement pair.
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