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Abstract

Studies have shown that the standard law of belief updating—Bayes’ rule—is de-

scriptively invalid in various settings. In this paper, I introduce and analyze a gen-

eralization of Bayes’ rule—Coarse Bayesian updating—accommodating much of the

empirical evidence. I characterize the model axiomatically, show how it generates sev-

eral well-known biases, and derive its main implications in static and dynamic settings.

Each axiom expresses a property of Bayes’ rule but, conditional on the others, stops

just short of making the agent fully Bayesian. The model employs standard primitives,

making it suitable for applications; I demonstrate this by applying it to a standard

setting of decision under risk, leading to a close relationship with the Blackwell infor-

mation ordering and comparative measures of cognitive sophistication and bias.

1 Introduction

Bayesian updating plays a central role in economic theory. A number of studies, however,

document behavior that cannot be reconciled with Bayes’ rule. For example, individuals

may under-react to new information or even ignore it altogether; others may over-react by

falsely extrapolating or, more generally, engaging in pattern-seeking behavior. “Motivated”

reasoning, among other mechanisms, may lead individuals to under-react to some signals but

over-react to others. Still others may be Bayesian except when information is too extreme or

unexpected. Such heterogeneity, both within and between individuals, poses an interesting

challenge to the Bayesian paradigm and calls not just for new models of behavior, but for
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analysis of the features of Bayesianism that are compatible or incompatible with the wide

range of documented behavior.

In this paper, I introduce and analyze a generalization of Bayesian updating—Coarse

Bayesian updating—encompassing many documented phenomena. The main results charac-

terize, axiomatically, both the model and the gap between it and standard Bayesian updating.

There are two advantages to this approach. First, each axiom expresses a falsifiable property

of Bayes’ rule. This provides a normative foundation for Coarse Bayesian behavior and as-

surance that, despite its flexibility, the model is not so general as to accommodate anything.

Second, the characterizations identify not just which properties of Bayes’ rule are compatible

with Coarse Bayesian behavior, but also which properties are necessarily violated by proper

(non-Bayesian) Coarse Bayesians. This provides a transparent comparison of the model’s

conceptual trade-offs and, as described below, a sense in which it is a small departure from

standard Bayesianism. The end result is a framework capturing a variety of departures from

Bayes’ rule while remaining tractable for economic applications; I illustrate this by deriving

its main implications in a general setting of decision under risk.

Intuitively, a Coarse Bayesian simplifies the world by considering only a subset of the

probability space. Given this restriction, the agent applies subjective criteria to switch

among beliefs in that set. More precisely, a Coarse Bayesian agent is characterized by (i) a

partition of the probability simplex into convex cells, and (ii) a representative distribution

for each cell of the partition, one of which is the prior. After observing a signal, the agent

determines which cell contains the Bayesian posterior and adopts the representative of that

cell as posterior belief (see Figure 1). Importantly, the agent need not point-identify the

Bayesian posterior; instead, he merely approximates it by determining which cell it belongs

to. For example, the agent might analyze information in small steps, gradually eliminating

candidates for the true distribution until only one cell remains in contention. Thus, the

procedure is not “more difficult” than Bayesian updating to begin with.

The parameters of the model—cells and their representative points—are characteristics

of the individual: two Coarse Bayesians may differ in their sets of feasible beliefs, their

partitions, or both. In contrast to the canonical framework of Savage (1954), then, Coarse

Bayesians exhibit subjectivity not only in their prior beliefs but in their criteria for revising

those beliefs. Consequently, different agents may exhibit over-reaction, under-reaction, or

other biases depending on the signal, the partition, and the positions of representative points

within their cells. There are several ways of interpreting this behavior, such as categorical

thinking or signal distortion—I discuss these, and other, interpretations in section 2.

The first result provides a simple characterization of the updating procedure. I take as

primitive a finite, exogenous state space and an updating rule specifying an individual’s be-

2



µe

µ̂

µ′

Figure 1: Coarse Bayesian updating. In this example, there are three feasible beliefs (solid
dots). The point µe is the prior. After observing a signal, the agent determines which cell of
the partition contains the Bayesian posterior µ̂, then adopts the representative of that cell
(in this case, µ′) as his new belief.

liefs at every possible signal. In my framework, signals represent messages that can be gener-

ated by stochastic information structures. Thus, a signal is a profile of numbers representing

likelihoods of the associated message being generated in different states. By employing such

primitives, the model is readily adaptable to standard economic or game-theoretic settings.

The characterization involves three testable axioms on the updating rule, each capturing a

property of standard Bayesian behavior. First, Homogeneity states that beliefs are invariant

to scalar transformations of signals: like Bayes’ rule, Coarse Bayesian updating rules only

depend on the likelihood ratios of the observed signal. Second, Cognizance states that if

two signals result in the same belief, then so does a “garbled” signal indicating that one

of those signals was generated. A natural interpretation of this axiom is that the agent

understands, or is cognizant of, his own updating procedure: if he is uncertain about which

of two signals was generated but recognizes that each would lead to the same posterior belief,

then he adopts that belief. Finally, Confirmation states that if a signal exactly supports (or

confirms) some feasible belief, then the updating rule associates that belief to the given

signal. Theorem 1 establishes that an updating rule has a Coarse Bayesian representation

if and only if it is Homogeneous, Cognizant, and Confirmatory; moreover, the associated

partition, representative elements, and prior are unique.

Next, Proposition 1 establishes that, under mild assumptions, strengthening any of the

axioms to an if-and-only-if form forces the agent to be Bayesian. For example, Homogeneity

states that if two signals have the same likelihood ratios, then they induce the same beliefs.

The proposition implies that if one adds a fourth axiom, “two signals have the same likelihood

ratios if they induce the same beliefs” (the converse to Homogeneity), then the agent must

be Bayesian—the added responsiveness to information implied by this converse statement

closes the gap between Bayesian and Coarse Bayesian behavior. The same property holds

for Cognizance and Confirmation: adding the converse statement to either axiom makes

the agent Bayesian. This is the sense in which Coarse Bayesian updating is, qualitatively,
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a “small” departure from Bayes’ rule. Moreover, since Bayes’ rule satisfies all three axioms

and their converse statements, the converse statements capture the features of Bayes’ rule

that are violated by (proper) Coarse Bayesians.

Section 3 explores the main implications of the model and how it might be applied.

In section 3.1, I discuss how the framework can be used as a tool for modeling various

biases (section 3.1.1), for predicting or understanding real behavior (section 3.1.2), or for

testing or identifying coarse cognition in experiments (section 3.1.3). For example, I show

in section 3.1.1 that Coarse Bayesians may exhibit over/under-reaction, “motivated” belief

updating, limited perception, or other biases and establish in section 3.1.2 that, generically,

all non-Bayesian behavior in the model stems from the combination of three particular

biases (an implication of Proposition 1); this fully characterizes the predictions of the model

and informs part of the discussion in section 3.1.3 on the design of experiments. I also

discuss, at an intuitive level, how the framework can be used in more applied settings to

shed light on behavior like financial decision making, stereotyping, and discourse or non-

informative persuasion. Finally,1 section 3.2 explores some basic properties of the model

in dynamic settings. I consider two categories of dynamic updating rules: pooled rules and

sequential rules. Pooled rules incorporate, at every time period, the full history of signal

realizations; consequently, pooled rules satisfy strong forms of path-independence and have

simple convergence properties. Sequential rules, however, involve signal-by-signal updating,

introducing various degrees of path dependence and more nuanced convergence properties.

Section 4 applies the model to a standard setting of decision under risk. I analyze

how Coarse Bayesians value information (Blackwell experiments) when faced with menus of

actions with state-dependent payoffs. I show that a Coarse Bayesian’s ex-ante value of infor-

mation can be expressed in a familiar posterior-separable form, then establish that, unlike

Bayesians, Coarse Bayesians typically exhibit violations of the Blackwell (1951) informa-

tion ordering—they need not assign higher ex-ante value to more informative experiments.

I characterize the menus (decision problems) in which a given Coarse Bayesian benefits

from Blackwell improvements and show that the connection runs much deeper: two Coarse

Bayesians are identical—same cells, same representative points—if and only if they benefit

from the same Blackwell improvements. Thus, the parameters of the model can be uniquely

identified from the agent’s menu-contingent rankings of Blackwell-comparable experiments.

In section 4.2, I examine how a Coarse Bayesian’s welfare changes as he becomes “more

Bayesian.” I consider three such orderings. First, an agent is more sophisticated if he

employs a finer partition. I show that more-sophisticated agents are characterized by height-

1The Online Appendix contains additional results related to observational learning and the connection
between my model and others involving maximum likelihood-style reasoning.
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ened responsiveness to information, as captured by ex-ante value of information. Second,

one agent is more biased than another if his updating rule exhibits larger distortions away

from Bayesian posteriors. I show that greater bias is characterized by greater susceptibility

to harmful exploitation in that worst-case losses, relative to a Bayesian, increase as bias in-

creases. Importantly, neither greater sophistication nor lower bias imply the agent is better

off at all menus or signal realizations. The final result shows that such welfare enhancements

require the agent to be perfectly Bayesian on a larger set of signal realizations, giving rise

to a third ordering that jointly refines the sophistication and bias orderings.

Throughout the paper, my focus is on the general class of Coarse Bayesian representations

and their properties. I do not take a stance on where partitions or representative elements

“come from,” viewing them instead as subjective (but identifiable) characteristics of an indi-

vidual, much like subjective prior beliefs. There are several ways to restrict or endogenize the

parameters by adding assumptions about the decision problem(s) agents expect to face, the

signaling structure, and costs or constraints on the fineness of the updating rule (for example,

a bound on the number of cells in the partition). The results of section 4.2 suggest a slightly

different approach may be valuable: rather than solving for an optimal updating rule in the

context of a specific environment, one may prefer a more robust objective—characterized

by the bias ordering, for example—accommodating uncertainty about the environment. I

discuss this at the end of section 4.2.

To summarize, the main contribution of the paper is a new model of belief updating

accompanied by analysis of its essential properties and implications. Few, if any other

models proposed in the literature can accommodate the range of behavior studied in section

3.1. Any model that can is necessarily quite flexible, but the Coarse Bayesian framework

has some advantages. First, it is testable: not all behavior satisfies the axioms. Second, it

involves a clear separation between properties of Bayes’ rule that are compatible with biases

in belief updating and those that are not. Third, the model is portable and tractable for

applications; it is one of just a few to take general stochastic signals as the starting point,

allowing it to be directly imported to standard settings in economics and game theory.

Section 4 demonstrates this by deriving the main implications of Coarse Bayesian updating

in standard settings of decision under risk—a core component of any new model of updating

behavior. Finally, it is simple: the key ideas can be captured by a single picture (Figure 1),

and the axioms and characterizations are easy to state, prove, and interpret.

Related Literature

Economists and psychologists have developed a large body of research documenting system-

atic violations of Bayesian updating; early contributions include Kahneman and Tversky
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(1972), Tversky and Kahneman (1974), and Grether (1980). As seen in the surveys of

Camerer (1995), Rabin (1998), and Benjamin (2019), there is substantial variation in both

experimental protocols2 and the patterns of behavior displayed by subjects. For example,

under-reaction is quite common but by no means an established law of behavior—over-

reaction occurs as well; there is mixed evidence for asymmetric processing of ego-relevant

information—subjects may or may not respond differently to good news than they do to bad

news; and numerous studies document individual heterogeneity—some subjects are more

Bayesian than others (see Benjamin, 2019 for a survey and meta-analysis of the literature).

Motivated by this evidence, several authors have developed models to better understand

the mechanisms behind, and consequences of, non-Bayesian updating. Models focusing on

implications of biased updating are typically cast in simplified frameworks (eg, two states

of the world; particular protocols or functional form assumptions) or involve non-standard

elements like ambiguous signals or framing effects. See, among others, Barberis et al. (1998),

Fryer et al. (2019), Gennaioli and Shleifer (2010), Rabin and Schrag (1999), and Mullainathan

et al. (2008). My emphasis, particularly in sections 3 and 4, is on implications that are

reasonably independent of any particular application. As such, I employ standard primitives

(a finite state space; stochastic information structures; general decision problems) that can

be adapted to any economic model.

Decision theorists have developed axiomatic approaches to non-Bayesian updating. Ko-

vach (2020), for example, develops a model of conservative updating. Epstein (2006) provides

a model of non-Bayesian updating accommodating under-reaction, over-reaction, and other

biases; Epstein et al. (2008) extend this model to an infinite-horizon setting. Zhao (2022) ax-

iomatizes an updating rule for signals indicating that one event is more likely than another.

Like these authors, I take a general approach and characterize behavior axiomatically. My

model is not geared toward a specific bias or application, but provides a general framework

of coarse cognition that accommodates (and generates) a variety of non-Bayesian behavior.

Coarse Bayesian updating resembles, to a degree, the well-known representativeness

heuristic of Kahneman and Tversky (1972), wherein an individual “evaluates the probability

of an uncertain event, or a sample, by the degree to which it is: (i) similar in essential prop-

erties to its parent population; and (ii) reflects the salient features of the process by which it

is generated” (Kahneman and Tversky, 1972 p. 431). One might interpret Coarse Bayesian

representations—cells and their representative points—as a way of formalizing the represen-

tativeness heuristic by providing an agent’s subjective assessment of “similarity,” “essential

2For example, studies differ in whether subjects observe individual signals or larger samples/sequences
of evidence; whether prior beliefs are objectively induced or subjectively formed by participants; whether
choices are incentivized with monetary rewards; and how problems and information are framed.
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properties,” or “salient features.” There are at least two problems with this. First, the

representativeness heuristic requires agents to ignore base rate (prior) information, which

is inconsistent with Coarse Bayesian behavior: the prior is directly relevant to a Coarse

Bayesian because the agent adopts the representative of the cell containing the Bayesian

posterior. Second, the Coarse Bayesian framework accommodates behavior that is at odds,

intuitively, with the representativeness heuristic. For example, Coarse Bayesian updating

permits agents to be perfectly Bayesian as long as they “notice” the signal (see section 3.1).

Despite the freedom afforded by the definition above, it would be a stretch to categorize

such behavior as an instance of the representativeness heuristic when other explanations,

like limited attention, seem more appropriate. In section 2, I offer other interpretations of

Coarse Bayesian behavior that avoid these difficulties.

Three studies are especially relevant to Coarse Bayesian updating. First, the hypothesis

testing model introduced by Ortoleva (2012) posits that agents apply Bayes’ rule except when

news is sufficiently “surprising,” in which case a maximum-likelihood criterion is applied us-

ing a second-order prior.3 Specifically, an agent applies Bayes’ rule if the prior probability of

the signal exceeds a threshold ε ≥ 0; otherwise, the agent updates a second-order prior via

Bayes’ rule and selects a belief of maximal probability under the new second-order beliefs. I

show that Coarse Bayesian updating can accommodate similar behavior and (in the Online

Appendix) compare Coarse Bayesian rules to a general class of Maximum-Likelihood updat-

ing rules. I show that Coarse Bayesian rules can be expressed as Maximum-Likelihood rules

if there are only two states but that, in general, neither category subsumes the other. No-

tably, Maximum-Likelihood rules may violate the Confirmation property—perfect evidence

of a candidate belief does not guarantee that that belief is selected.

Second, Wilson (2014) studies optimal updating rules for a boundedly rational agent

facing a binary decision problem and a stochastic sequence of signals. There are two states

and the agent has limited memory: only K memory states are available. In an optimal

protocol, each memory state is associated with a convex set of posterior beliefs and a repre-

sentative distribution for that set; if an interim Bayesian posterior belongs to some cell, then

the representative of that cell is adopted as the agent’s belief. Thus, the optimal protocol

emerging from Wilson’s model can be represented as a (dynamic) Coarse Bayesian updating

procedure. Naturally, the parameters of this representation—cells and their representative

points—depend on features of the environment like the signal structure, the stakes of the

decision problem, and the bound K. Like Bayesian updating, Coarse Bayesian updating

procedures do not depend on any factors other than the informational content of realized

signals. I do not require Coarse Bayesian representations to be optimal in any sense, nor do

3See also Dominiak et al. (2023), who study a behaviorally equivalent model.
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I impose cognitive bounds such as a restriction on the number of cells. This allows my model

to capture documented behavior (for example, Bayesian updating except when signals are

too “extreme”—see section 3.1) that is inconsistent with Wilson’s model.

Third, in a working paper, Mullainathan (2002) develops a model of categorical thinking.

Agents in this model follow a procedure similar to Coarse Bayesian updating where feasible

posteriors represent categories and the mapping from Bayesian posteriors to categories is

determined by a partition of the simplex. A key difference is that Mullainathan’s partition

is derived from the set of feasible posteriors: given a set of feasible posteriors, an optimality

condition similar in spirit to maximization of a likelihood function is used to select a posterior.

The resulting partition has convex cells, as in a Coarse Bayesian representation, but cells

need not contain their representative elements. In other words, behavior in this model need

not satisfy Confirmation—see the Online Appendix for a concrete example.

2 Model

Let Ω = {1, . . . , N} denote a finite set of N ≥ 2 states and ∆ the set of probability distri-

butions over Ω. A distribution µ̂ ∈ ∆ assigns probability µ̂ω to state ω ∈ Ω.

An experiment is a matrix with N rows, finitely many columns, and entries in [0, 1] such

that each row is a probability distribution and each column has a nonzero entry. Columns

represent messages that might be generated, and rows state-contingent probability distribu-

tions over messages. Let E denote the set of all experiments, with generic element σ.

As in Jakobsen (2021), a signal is a profile s = (sω)ω∈Ω ∈ [0, 1]Ω such that sω ̸= 0 for

at least one state ω. Let S denote the set of all signals. A signal s represents a column

(message) of some experiment, and sω the likelihood of the message being generated in state

ω. The notation s ∈ σ indicates that s is a column of σ. I reserve e to denote the signal

e ∈ S such that eω = 1 for all ω ∈ Ω; note that e qualifies as an (uninformative) experiment.4

Using the notation of signals, an experiment can be viewed as a collection (matrix) of signals,

of state-contingent distributions over signals, or of points in S that sum to e; see Figure 2.

For profiles v = (vω)ω∈Ω and w = (wω)ω∈Ω of real numbers, let vw := (vωwω)ω∈Ω denote

the profile formed by multiplying v and w component-wise. Similarly, if wω > 0 for all ω,

let v/w := (vω/wω)ω∈Ω. The dot product of v and w is given by v · w :=
∑

ω∈Ω vωwω. The

notation v ≈ w indicates that v = λw for some λ > 0, where λw := (λwω)ω∈Ω is the scalar

product of λ with w. The standard Euclidean norm of v is denoted ∥v∥.
For µ̂ ∈ ∆ and s ∈ S where s · µ̂ ̸= 0, let B(µ̂|s) := sµ̂

s·µ̂ ∈ ∆ denote the Bayesian

4Any signal s such that sω = sω′ for all ω, ω′ ∈ Ω is uninformative, as is any experiment composed of
such signals; e is a convenient representative because it qualifies as both a signal and an experiment.
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Figure 2: Three representations of an experiment σ = [r, s, t].

posterior of µ̂ at s. To allow non-Bayesian behavior, the key primitive of the model is a

function µ : S → ∆ (an updating rule) assigning distributions µs := µ(s) ∈ ∆ to signals

s ∈ S. The interpretation is that µs is the agent’s posterior belief conditional on observing

signal s. Being a function on S, the updating rule specifies beliefs at all conceivable signals,

not just those generated by a particular experiment. I assume µe, the prior, has full support.5

My notion of an updating rule implicitly makes two assumptions about behavior. First,

updating rules condition beliefs on signal realizations s but not the experiment(s) generating

them. In practice, one might record posterior beliefs as µ(σ,s) where s ∈ σ, changing the

domain of µ to (a subset of) E × S. Like Bayesian updating, however, Coarse Bayesian

updating depends on s but not the other columns of σ; therefore, I omit dependence on

experiments σ. Second, the agent’s prior coincides with his posterior belief after observing

e. This, too, is a property of Bayes’ rule that Coarse Bayesians satisfy.

2.1 Coarse Bayesian Representations

Consider an agent whose behavior is summarized by an updating rule µ : S → ∆. In this

section, I show that Coarse Bayesian updating is characterized by three axioms on µ. Each

axiom expresses a property of Bayes’ rule and is falsifiable with data in the form of an

updating rule. The axioms also lead to a simple comparison with Bayes’ rule (Proposition

1), capturing the sense in which the model is a “small” departure from Bayes’ rule and the

exact properties of Bayesian rationality that are violated by (proper) Coarse Bayesians.

Axiom 1 (Homogeneity). If s ≈ t, then µs = µt.

Homogeneity requires the agent’s analysis of a signal s to depend only on the likelihood

5Some authors define updating rules as functions φ : ∆× S → ∆, with the interpretation that φ(µ̂, s) is
the posterior belief given a prior µ̂ and signal s. That approach is not appropriate here because it assumes
the agent can hold any belief µ̂. Coarse Bayesians entertain only a subset of ∆ as possible beliefs, so one
cannot freely vary the prior. In my model, the set of candidate beliefs (including the prior) is subjective
and revealed via updating behavior. Dynamic extensions (section 3.2) that condition beliefs on histories of
signals provide a way to study updating as the agent moves around the set of candidate beliefs.
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ratios sω/sω′ . This is a key feature of Bayesian updating and it implies the agent is not

susceptible to certain types of framing effects. For example, whether information is stated

in terms of frequencies or likelihoods has no effect on the agent’s cognitive process.

By Homogeneity, the notation µs can be extended to all non-zero profiles s̃ such that

s̃ω ≥ 0 for all ω because, if necessary, such profiles can be scaled by a factor λ > 0 to yield

a signal λs̃ ∈ S. This will be convenient for expressing the remaining axioms.

Axiom 2 (Cognizance). If µs = µt, then µs+t = µs.

Cognizance states that if signals s and t result in the same posterior belief, then the

agent adopts that belief if he knows that either s or t has realized. This interpretation stems

from the fact that s + t is a “garbled” signal indicating that either s or t was generated.6

Thus, an interpretation of Cognizance is that the agent understands his own updating rule:

if he knows that one of two signals was generated and realizes that either one would lead to

the same posterior belief—that is, if he is cognizant of his own updating procedure—then

he ought to adopt that belief.7

Although Cognizance is mainly motivated by normative considerations, it is also po-

tentially important in applications. For example, section 4 studies how Coarse Bayesians

value information. This involves ex-ante rankings of information structures that rely on

correct forecasts of updating behavior. For such exercises to make sense, an assumption like

Cognizance is required.

Axiom 3 (Confirmation). If t ≈ µs/µe, then µt = µs.

To understand Confirmation, observe that the set of attainable beliefs, {µs : s ∈ S},
serves as a kind of consideration set—no other points in ∆ are candidate posteriors. Con-

firmation states that if the Bayesian posterior is a point in that set, the agent adopts that

point as posterior belief. In particular, t ≈ µs/µe satisfies B(µe|t) = µs (that is, t confirms

µs by providing “perfect” evidence of it for an agent with prior µe), so µt = µs. In contra-

positive form, this means that if µs does not coincide with the Bayesian posterior at s, then

the Bayesian posterior is not a candidate belief. Although quite intuitive and normatively

appealing, Confirmation is not satisfied by some related models—see the Online Appendix.

6For example, if s, t ∈ σ, there is a garbling matrix M such that σ′ = σM collapses columns s and t to a
single column s+ t without altering any other columns of σ.

7Axioms 1 and 2 can be combined into one statement: if µs = µt, α, β ≥ 0 and αs+βt ∈ S, then µαs+βt =
µs (it would not suffice to replace the statement with convex combinations of s and t, ie, µαs+(1−α)t = µs,
even though this property is implied by the axioms; conic combinations are needed). I have separated this
statement into two axioms because they capture intuitively distinct features of behavior.
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Theorem 1. An updating rule µ is Homogeneous, Cognizant, and Confirmatory if and only

if there is a partition P of ∆ and a profile µP = (µP )P∈P of distributions such that

(i) each cell P ∈ P is convex,

(ii) µP ∈ P for all P ∈ P, and

(iii) for all s ∈ S, B(µe|s) ∈ P implies µs = µP .

Such a pair ⟨P , µP⟩ is a Coarse Bayesian Representation of µ. If ⟨Q, µQ⟩ is another

Coarse Bayesian Representation of µ, then P = Q and (µP )P∈P = (µQ)Q∈Q.

Proof. First, observe that if α, β ≥ 0 and s, t, αs+ βt ∈ S, then

B(µe|αs+ βt) =
(αs+ βt)µe

(αs+ βt) · µe

=
αs · µe

(αs+ βt) · µe

sµe

s · µe
+

βt · µe

(αs+ βt) · µe

tµe

t · µe

=
αs · µe

(αs+ βt) · µe
B(µe|s) + βt · µe

(αs+ βt) · µe
B(µe|t). (1)

Thus, B(µe|αs + βt) is a convex combination of B(µe|s) and B(µe|t); the weight attached

to B(µe|s) is the prior probability of signal αs given that either αs or βt is generated. It is

now straightforward to verify that if µ has a Coarse Bayesian Representation, then Axioms

1–3 are satisfied (Axiom 2 follows from equation (1) and convexity of cells P ∈ P).

For the converse, we construct a Coarse Bayesian Representation as follows. First, note

that Homogeneity and Cognizance imply µ is Convex: if µs = µt and α ∈ [0, 1], then

µαs+(1−α)t = µs. Combined with Homogeneity, it follows that µ is measurable with respect

to a partition of S into convex cones. That is, there is a partition C of S such that (i) µs = µt

if and only if there exists C ∈ C such that s, t ∈ C, and (ii) every C ∈ C is a convex cone:

if s, t ∈ C and α, β ≥ 0 such that αs + βt ∈ S, then αs + βt ∈ C. Every C ∈ C can be

identified with a subset of ∆ by letting PC := {B(µe|s) : s ∈ C}. Each set PC is convex by

equation (1) and the fact that sets C ∈ C are convex cones. In addition, P := {PC : C ∈ C}
is a partition of ∆ because B(µe|s) = B(µe|t) if and only if s ≈ t, forcing s and t to belong

to the same cone C ∈ C. For each P ∈ P , let µP denote the unique distribution µ̂ such

that µs = µ̂ for all s ∈ C, where P = PC . Confirmation implies µs = µP ∈ P whenever

B(µe|s) ∈ P ∈ P . Uniqueness of ⟨P , µP⟩ follows from uniqueness of C.

Theorem 1 formalizes the concept of a Coarse Bayesian Representation and establishes

that an updating rule has such a representation if and only if it is Homogeneous, Cognizant,
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and Confirmatory. Each of these testable axioms imposes a degree of Bayesian rationality

on the agent by expressing a property of Bayes’ rule—indeed, each axiom is satisfied by a

standard Bayesian. As we shall see, Coarse Bayesian updating nonetheless accommodates a

variety of behavioral biases and other violations of Bayes’ rule.

Coarse Bayesians partition the probability simplex, assign a representative point to each

cell, and adopt the representative of a cell as posterior if the Bayesian posterior belongs to

that cell. Why might an agent behave this way? Below, I offer four interpretations of the

model, some of which may be more appropriate than others depending on the application.

1. Competing Theories. Here, the agent simplifies the world by considering a set of candidate

theories (representative points), sets criteria (the partition) for switching between them, and

analyzes signals to the extent necessary to determine whether a change is justified. The

agent is only interested in whether the evidence satisfies his “standard of proof” for a given

theory, so he does not necessarily point-identify the Bayesian posterior. For example, he

might process signals in small steps, gradually eliminating points in the simplex until he

determines which cell applies.

2. Limited Computation. An agent might wish to compute the Bayesian posterior but be

unable to point-identify it. Consequently, the agent lumps several posteriors together with

a single point, making the representation a simplifying heuristic or approximation to Bayes’

rule. Since different agents may employ different partitions or representative points, they

may disagree on what constitutes a hard problem or a good approximation.

3. Signal Distortions. Here, to update beliefs, the agent mentally transforms signals before

applying Bayes’ rule. Thus, apparent deviations from Bayes’ rule are the result of imperfect

perception or attention—not necessarily computational constraints. Theorem 2 below for-

malizes the concept of Signal Distortion Representations and establishes their equivalence

to Coarse Bayesian Representations in static settings.8 In dynamic settings, however, the

distinction matters (see section 3.2).

4. Categorical Thinking. Here the agent reasons about categories of beliefs, each represented

by a cell of the partition. This way, a cell represents distributions that share some prop-

erties of interest, and its representative point is a natural example (or “archetype”) of a

distribution with those properties. When information arrives, the agent determines which

category applies and adopts its archetype as posterior. The key difference between this and

8The term “signal distortion” is often associated with Grether (1980) updating, where distorted signal
and/or prior likelihoods are used in the updating process. My notion of signal distortion employs a different
functional form and does not involve distorted priors; see Theorem 2 below.
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the competing-theories interpretation is that here the cells (not their representative points)

are focal: the agent is primarily interested in whether the true distribution belongs to a

given category, and uses representative points to envision the category.

In each case, the parameters of the representation are subjective characteristics of the in-

dividual : agents may differ in their priors, partitions, or representative points. In the same

way that standard Bayesian theories are agnostic about the source of one’s prior beliefs, my

model does not take a stance on how partitions or representative points are formed. Rather,

Theorem 1 characterizes Coarse Bayesian behavior in terms of observable primitives (the

updating rule) and establishes that all parameters can be uniquely identified from those

primitives—with or without additional assumptions about how they came to be.9

The next result provides a simple comparison between Bayesian and Coarse Bayesian

behavior. To proceed, an additional definition is required; some subsequent results in the

paper also utilize this definition.

Definition 1. Given ⟨P , µP⟩, a cell P ∈ P is regular if it has full dimension in ∆ and its

representative µP belongs to the relative interior of P . If every cell P ∈ P is regular, then

⟨P , µP⟩ is regular.

Proposition 1. Suppose µ is non-constant and has a Coarse Bayesian Representation ⟨P , µP⟩
where every non-singleton cell of P is regular. Then µ is Bayesian (that is, µs = B(µe|s)
for all s ∈ S) if and only if any of the following three conditions hold:

(i) µs = µt implies s ≈ t;

(ii) µs+t = µs implies µs = µt;

(iii) µt = µs implies t ≈ µs/µe.

Proposition 1 states that, under mild regularity conditions, strengthening any of Ax-

ioms 1–3 to an if-and-only-if form forces a Coarse Bayesian agent to be perfectly Bayesian.

Statement (i), the converse to Homogeneity, makes the agent highly responsive to changes

to information: different likelihood ratios lead to different posterior beliefs. Statement (ii),

the converse to Cognizance, requires that if the agent is unaffected by the knowledge that t

may have been generated instead of s, then s and t must lead to the same beliefs. Finally,

statement (iii), the converse to Confirmation, asserts that if t leads to the same posterior

as s, then t must be perfect evidence of µs. These statements are themselves properties

9See also the discussion at the end of section 4.2 regarding approaches to endogenizing the parameters.
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of Bayes’ rule, and the proposition implies that if a Coarse Bayesian agent satisfies any of

them, then the agent actually satisfies all three and behaves like a standard Bayesian.10

There are two key takeaways from Proposition 1. First, the “wedge” between Bayesian

and Coarse Bayesian updating is, qualitatively, fairly small: Axioms 1–3 impose enough

Bayesian rationality that slightly strengthening any of them eliminates non-Bayesian be-

havior. Nonetheless, the model permits many documented departures from Bayes’ rule.

Thus, one can accommodate a variety of non-Bayesian behavior without abandoning tenets

of Bayesian rationality that, combined, almost make the agent perfectly Bayesian. Sec-

ond, Proposition 1 identifies the properties of Bayes’ rule that are necessarily violated by

proper Coarse Bayesians. This provides a more comprehensive understanding of the model,

enables direct comparison of its conceptual trade-offs and, as we shall see, leads to a full

characterization of the non-Bayesian behavior predicted by the model.

I conclude this section by providing an alternative representation of Coarse Bayesian

behavior and a brief discussion of some limitations of the model.

Theorem 2. An updating rule µ has a Coarse Bayesian Representation if and only if there

is a function d : S → S such that

(i) s ≈ t implies d(s) ≈ d(t),

(ii) d(s) ≈ d(t) implies d(λs+ (1− λ)t) ≈ d(s) for all λ ∈ [0, 1],

(iii) d(d(s)) = d(s) for all s,

and µs = B(µe|d(s)) for all s. The function d is a Signal Distortion Representation

of µ. If d′ is another such representation, then d′(s) ≈ d(s) for all s ∈ S.

Signal Distortion Representations formalize the signal distortion interpretation of Coarse

Bayesian behavior, replacing the parameters ⟨P , µP⟩ with a function d satisfying three prop-

erties analogous to Axioms 1–3; in particular, an agent who receives signal s applies Bayes’

rule to a distorted signal d(s). Theorem 2 establishes that Coarse Bayesian and Signal

Distortion behavior is equivalent in static settings; however, as shown in section 3.2, this

equivalence fails in dynamic settings.

Naturally, Coarse Bayesian updating is not without its limitations. Although Theorem

1 and Proposition 1 fully characterize and contrast Coarse Bayesian and standard Bayesian

behavior, it is worth highlighting a few additional implications of the framework.

10The regularity assumptions of Proposition 1 are only needed to establish that statement (ii) forces the
agent to be Bayesian—statements (i) and (iii) each make any Coarse Bayesian perfectly Bayesian.
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1. Only the realized signal matters. More precisely, Homogeneity requires that only the

likelihood ratios of s can affect posterior beliefs. This rules out sensitivity to the way

information is framed, as well as the possibility that extraneous features of the environment

might impact beliefs.

2. Beliefs are represented by probability distributions. For example, the conjunction fallacy

(illustrated by the well-known “Linda” problem of Tversky and Kahneman, 1983) occurs

when subjects declare an event E less likely than a conjunction E ∩ F . Such beliefs cannot

be represented by probability distributions and therefore fall outside the scope of the model.

3. Discontinuities in s. Jumps can occur when perturbations to a signal make the Bayesian

posterior cross over a cell boundary. This is a feature of any model involving threshold-style

behavior, including that of Wilson (2014), the Categorical-Thinking model of Mullainathan

(2002), the Hypothesis-Testing model of Ortoleva (2012) and the related Maximum Like-

lihood models examined in the Online Appendix. If continuity is an essential conceptual

feature of some pattern of behavior—rather than a convenient technical assumption—then

Coarse Bayesian updating will, at most, provide an approximation to that behavior.

4. Convex cells. This convexity is driven by Cognizance and can be discarded by dropping

that axiom. However, as explained above, Cognizance is potentially important in applications

because it means agents correctly forecast their own updating behavior.

3 Implications, Applications, and Dynamics

This section explores the main implications and applications of the model as well as its rela-

tionship to empirical work on non-Bayesian updating. Sections 3.1 and 3.2 are independent

of each other and can be read in any order; section 4 is also independent of this section.

3.1 Implications and Applications

To map out the main implications and applications of Coarse Bayesian updating, this section

considers three ways one might employ the framework: (i) as a tool for modeling specific

biases (section 3.1.1), (ii) as a model for predicting or understanding behavior (section 3.1.2),

and (iii) as a guide for designing experiments and testing for coarse cognition (section 3.1.3).

3.1.1 Modeling Biased Updating

The Coarse Bayesian framework does not target a specific bias (or collection thereof) but

instead provides a standalone model of coarse cognition that will, in various circumstances,
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µe

(a) Under-reaction

µe

(b) Over-reaction

µe

(c) Upward Bias

µe

(d) A “Typical” Coarse Bayesian

Figure 3: Four Coarse Bayesian Representations on ∆ = [0, 1].

generate well-known biases. That said, one might be interested in modeling specific biases

when bringing the framework to applications. Below, I illustrate how a variety of documented

biases can be represented as Coarse Bayesian behavior. Since they are Coarse Bayesian Rep-

resentations, Axioms 1–3 provide foundations while other findings in the paper, like those of

sections 3.2 and 4, provide general tools and results for their analysis.

1. Under-reaction, Over-reaction, and Asymmetric Updating. Conservative updating, or

under-reaction to information, is a well-documented behavior violating Bayes’ rule.11 Ben-

jamin (2019) conducts meta-analysis of the experimental literature and finds that under-

reaction is the most common bias. On the other hand, individuals also over-react to in-

formation in various settings. De Bondt and Thaler (1985), for example, find evidence of

over-reaction in financial markets (in particular, to unexpected news); more recently, Thaler

(2021) finds evidence of over-reaction to weak signals and under-reaction to strong signals.

When information is “ego-relevant,” subjects may respond asymmetrically to informa-

tion. Eil and Rao (2011) find that if information concerns personal attributes such as attrac-

tiveness, individuals under-react to negative signals but are approximately Bayesian when

processing positive signals; see also Sharot and Garrett (2016) for a survey of related studies.

To represent such behavior in the Coarse Bayesian framework, I follow the literature by

considering two-state settings; this way, ∆ can be identified with the unit interval. Figures

3a and 3b illustrate under- and over-reaction. In 3a, the agent never over-reacts but typically

under-reacts: his posterior belief (solid dot) is as close as possible to µe given the partition

of ∆ into sub-intervals (light/dark gray regions representing different cells). In 3b, the agent

never under-reacts but typically over-reacts: his posterior is farthest away from µe given the

partition. Figure 3c exhibits a biased agent who favors one state: posteriors typically assign

higher probability to state 1 than the Bayesian posterior and never less. Thus, it is relatively

easy for the agent to revise beliefs upward and more difficult to revise downward.

11See Phillips and Edwards (1966) and Edwards (1968) for early experiments on conservative updating.
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A common feature of Figures 3a-3c is that representative points of cells sit on cell bound-

aries; this is needed to model such biases in the Coarse Bayesian framework because there is

either an ideal belief the agent aspires to or an unappealing belief they seek to avoid. Figure

3d depicts a more typical Coarse Bayesian: representative points do not necessarily sit on

the boundaries of cells, so both over- and under-reaction occur, depending on the signal.

2. Limited Perception, Extreme-Belief Aversion, and Reactions to Unexpected News. The

model also accommodates agents who behave like standard Bayesians except in particular

circumstances. For example, consider Figure 4a. In this representation, the agent retains

prior µe unless the Bayesian posterior is sufficiently far away from µe, in which case he applies

Bayes’ rule. An interpretation is that the agent only notices signals that are sufficiently

strong or provocative to yield a large shift in the Bayesian posterior. This provides a way of

capturing imperfect attention or perception.12

Figure 4b exhibits rather the opposite behavior: the agent is Bayesian unless posterior

beliefs are too “extreme”—that is, close to degenerate distributions representing certainty

about the state. Ducharme (1970) argues that such behavior may explain some of the

experimental evidence for under-reaction (see also Benjamin et al., 2016, who introduce the

term “extreme-belief aversion”). Indeed, a Coarse Bayesian employing the representation in

Figure 4b would effectively under-react to signals that strongly support any particular state.

Figure 4c illustrates an updating rule that coincides with Bayes’ rule unless the observed

signal is sufficiently “surprising.” In this case, the prior strongly supports a particular state

and the agent exhibits non-Bayesian behavior only if the signal has a low probability of

occurrence in that state. Several studies, such as De Bondt and Thaler (1985), find that

updating behavior at such unexpected signals may be inconsistent with Bayes’ rule. See also

Ortoleva (2012), who develops a model to accommodate this, and related, evidence.

3.1.2 Understanding & Predicting Behavior

What does the Coarse Bayesian model predict, and how might it help explain real behavior?

Since the model accommodates a variety of biases, it does not necessarily predict whether one

bias prevails over another—additional assumptions are needed to make such comparisons.

Nonetheless, the model makes several concrete predictions about non-Bayesian behavior and

provides meaningful implications (and explanations) in a variety of settings.

12This makes the most sense in the signal-distortion interpretation of the model, where the agent transforms
signals before applying Bayes’ rule. The underlying signal distortion function d represents the agent’s
attention, avoiding the “circularity” of having the agent compute the Bayesian posterior of ignored signals—
a common criticism of rational inattention models.
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µe

(a) Limited Perception

µe

(b) Extreme-Belief Aversion

µe

(c) Unexpected News

Figure 4: Limited Perception, Extreme-Belief Aversion, and Reactions to Unexpected News.
Each point in the shaded regions represents a singleton cell.

General Predictions

1. (Non)Genericity of “quasiconvex” biases. While the model accommodates (for example)

those who always under-react or always over-react, it also suggests that such extremes are

unusual or non-generic. To see why, consider Figure 3. In Figure 3a, the agent always

under-reacts: relative to Bayesian posteriors, realized beliefs are closer to the prior. For this

to hold, representative points must sit on the boundaries of their cells. Therefore, global

under-reaction is a hairline case; a more typical Coarse Bayesian, depicted in Figure 3d,

under-reacts to some signals and over-reacts to others. More broadly, the biases depicted

by Figures 3a–3c are “quasiconvex”—the set of beliefs that distort upward is convex, as is

the set that distorts downward—and such quasiconvexity is non-generic because (outside of

trivial cases) it requires representative points to sit on cell boundaries.

Note, however, that the model predicts local uniformity of directional biases: if an indi-

vidual (say) over-reacts to a signal s, he likely over-reacts to signals near s as well. This holds

for regular Coarse Bayesian Representations and is a special case of the stability property

discussed next.

2. Local stability of Bayesian and non-Bayesian behavior. As illustrated by Figure 4, the

model accommodates individuals who apply Bayes’ rule in many (even most) circumstances.

In regions where the agent is Bayesian, cells are singletons and posterior beliefs vary smoothly

(and non-trivially) with the signal. In contrast, signals yielding non-Bayesian reactions can

typically be perturbed without affecting beliefs; this holds because in regular representations,

non-singleton cells have full dimension, implying that if a Bayesian posterior belongs to

the cell, the cell almost surely contains a neighborhood around that posterior—the only

exception is if the posterior sits on the boundary of the cell. Thus, non-Bayesian behavior

is locally stable: if a signal s evokes a non-Bayesian response, signals near s typically will,

too. Moreover, such signals yield the same (non-Bayesian) posterior.

Interestingly, Bayesian updating also tends to hold locally: if behavior at s is consistent
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with Bayes’ rule, then (almost surely) so is behavior at nearby signals. This is so because

consistency with Bayes’ rule at s implies Bayes’ rule is violated at nearby signals only if (i)

µs is the representative point of a non-singleton cell, or (ii) µs is the representative of a sin-

gleton cell that sits on the boundary of a region of non-singleton cells (like those illustrated

in Figure 4). Both scenarios are non-generic and amount to zero-probability events in signal

space. Therefore, conditional on being consistent with Bayes’ rule at s, the agent is very

likely to be consistent with Bayes’ rule at nearby signals.

3. Full characterization of predicted non-Bayesian behavior. Proposition 1 provides a com-

plete characterization of the non-Bayesian behavior that Coarse Bayesians must exhibit. In

particular, proper Coarse Bayesians satisfy the negations of properties (i)–(iii) in Proposition

1. This yields the following predictions:

(i) There exist signals s ̸≈ t such that µs = µt. In other words, Coarse Bayesians consider

some signals to be equivalent that a Bayesian would not.

(ii) There exist signals s, t such that µs ̸= µt while µs+t = µs. That is, there exist sig-

nals that a Coarse Bayesian distinguishes unless he is uncertain about which one was

generated, in which case one of the signals becomes the default.

(iii) There exist s, t such that µs = µt and t ̸≈ µs/µe. That is, there are signals s, t such

that t brings the agent to µs even though t is not perfect evidence of µs.13 This is a

kind of false extrapolation.

Statements (i)–(iii) are, in effect, three different biases that must be exhibited by a Coarse

Bayesian and they account for all non-Bayesian behavior generated by the model.

Applications

The following explores some of the ways the model can be used to understand behavior in

more applied contexts. The goal is to illustrate various applications of the model without

delving too deep into any of them, so the discussion is kept at a fairly high-level.

1. Categorization, Extrapolation and Financial Markets. There is a vast literature on coarse

(or categorical) thinking in psychology and economics. Broadly speaking, coarseness in-

volves lumping “similar” situations together and basing analysis (and subsequent decisions)

on features of categories. My model provides a unifying framework for settings where cate-

gorization involves belief updating; naturally, this affects choice and consumption behavior.

13Note that these signals may satisfy s ≈ t, so this is not equivalent to property (i).
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For example, patterns in financial markets and investor behavior can be understood

through the lens of Coarse Bayesian updating. Stocks are often classified into categories

and “style investors” choose how to invest across categories rather than individual stocks.

In a Coarse Bayesian framework, states represent characteristics of stocks, categories are

cells and representative points reflect the average within a cell—here, the cells are plausibly

exogenous. Crucially, information is processed on the level of categories and this is what

drives style investing. Such belief updating naturally entails false extrapolation to all stocks

within a category and explains, among other regularities, co-movement within categories (see

Sharpe et al., 1992 or Barberis and Shleifer, 2003). More recently, Teeple (2022) employs

a version of Coarse Bayesian updating to study behavior involving support and resistance

levels; again, the cells (levels) are naturally exogenous.

Stereotyping also fits the model particularly well. Suppose states are multidimensional,

with different dimensions capturing characteristics people or places might have. Cells of

the representation group signals—that is, noisy information about attributes—the agent

might receive about another person and representative points are the “stereotypes” associ-

ated with such information. For example, the representation might make the agent believe,

erroneously, that an individual with attribute x is likely to have attribute y. The exposure

an individual has to different people naturally affects how the individual groups or cate-

gorizes them; consequently, we should expect the partition to be finer (coarser) in regions

the individual encounters more (less) frequently. Thus, a basic version of the model, with

minimal assumptions on how cells and representative points are formed, can explain patterns

in stereotyping; for example, stereotypes contain a “kernel of truth” and inferences about

out-group members are more error-prone than those about in-group members—see Bordalo

et al. (2016) and Bursztyn and Yang (2022).

These and many other phenomena involving coarseness (polarization, inertial behavior,

etc) are widely studied but typically involve stylized models and specific assumptions about

how agents assess “similarity” to form categories. My framework allows such assessments to

be fully subjective and shows that they can be identified from behavior. The tools developed

here are based on standard primitives and therefore can aid the analysis of such applica-

tions; for example, section 4 establishes that more information, or finer categories, need not

be advantageous, and characterizes under what circumstances they actually are.

2. Discourse and Persuasion. While individual behavior is the focus of this paper, there are

interesting ways the model can be used to shed light on interactive phenomena, particularly

those involving communication or persuasion. Much of our discourse involves not just infor-

mation provision but arguments about how information should be interpreted and whether
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it justifies switching positions on some issue. Do recent data suggest a recession is coming?

What did the policymaker really mean when they said they were exploring options? Can

existing models adequately explain our observations or do we need a new theory?

A natural way to apply the model to such settings is to allow players (“persuaders”)

to influence its parameters. For example, a juror may wish to persuade another that the

evidence proves guilt beyond reasonable doubt. This is not a matter of acquiring new in-

formation (admissible evidence has already been presented in court) but of arguing about

where the cutoff should be between two competing theories (innocence or guilt); effectively,

the jurors argue about what “reasonable doubt” means and, thereby, how to evaluate avail-

able information. In other contexts, persuaders might wish to influence others’ actions by

proposing new theories (representative points) to explain or “frame” available information;

a carefully-constructed set of theories can make the receiver adopt beliefs and take actions

that are beneficial to the persuader.14 Again, this kind of persuasion is not about providing

new information but influencing the way available information is perceived.

Viewed this way, the model provides a lens through which patterns in discourse can be

better understood. A given Coarse Bayesian Representation captures the heuristics and

biases an agent employs when processing information. This affects a persuader’s incentives

for information provision but also for influencing those heuristics—that is, challenging the

set of theories under consideration or the standard of proof for switching between them.

Tactics like false dichotomies (arguing one of only two possible theories must be correct) or

straw-man arguments (misrepresenting a theory in order to more easily refute it) are but

two common examples that fit the model well and are difficult to explain without a notion

of coarse cognition.

3.1.3 Testing & Identifying Coarse Cognition

The results of this paper can help inform the design of experiments on non-Bayesian up-

dating. Below, I discuss key criteria for testing the model in the lab and how one might

separate Coarse Bayesian updating from competing explanations for non-Bayesian behavior.

1. Theorem 1 and Proposition 1 as guides for experiments. As a full axiomatic characteri-

zation of Coarse Bayesian updating, Theorem 1 provides a recipe for an ideal experiment:

Axioms 1–3 describe patterns in updating behavior that must be satisfied by any Coarse

Bayesian and thereby provide a guide for eliciting comparisons in the lab. Homogeneity, for

example, indicates that updating behavior is invariant to scalar transformations of signals,

14See Schwartzstein and Sunderam (2021) for an approach where the theories proposed by the persuader
are evaluated by the receiver according to a maximum-likelihood criterion.
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so a good experimental test of the model would expose subjects to signals of the form s and

λs; if a subject responds differently to λs than to s, they are not Coarse Bayesian. Similarly,

Cognizance and Confirmation provide testable properties of behavior that can falsify the

model by eliciting the right kinds of comparisons. This is generally true of any axiomatic

characterization provided the axioms are falsifiable, as is the case here.

As explained in section 3.1.2, Proposition 1 identifies patterns capturing proper Coarse

Bayesian behavior. Specifically, the negations of properties (i)–(iii) in Proposition 1 amount

to three different biases that must be exhibited by a proper Coarse Bayesian. Thus, docu-

menting such behavior helps support (not refute) the hypothesis that coarse cognition is at

work and can be used to distinguish Coarse Bayesian updating from alternative explanations

for non-Bayesian updating.

2. Exploring the signal space. A key implication of the model, discussed above, is local

stability of both Bayesian and non-Bayesian behavior. Intuitively, stability means that if

there is a non-Bayesian response to some signal, then nearby signals tend to generate the

same response. If instead behavior is consistent with Bayes’ rule, then it is likely consistent

at nearby signals as well. This yields two implications for experimental design. First, it

is important to consider signals near an original signal that was tested. If, for example, a

subject violates Bayes’ rule at s, behavior at signals near s indicates whether Coarse Bayesian

behavior is in play; if it is, then nearby signals yield the same posterior µs as s. Second, if

behavior at s is inconsistent with Bayes’ rule, one should also test signals that, under Bayes’

rule, would lead the subject to beliefs µs; this helps establish whether µs is, in fact, the

representative of some cell in a Coarse Bayesian representation.

More generally, the implications of the model suggest it is important to explore the signal

space. The fact that over/under-reaction are likely to hold locally but not globally in the

model (see section 3.1.2) suggests, for example, that one should test a broad set of signals,

not just those confined to a particular region. The same holds for Bayesian behavior: the

model predicts that adherence to Bayes’ rule, when it occurs, tends to hold at nearby signals

as well. Consequently, a broader range of signals must be considered. The axioms, as well

as Proposition 1, can help guide the selection of signals to test.

3. Qualitative experimental data. Experiments sometimes elicit “soft” data in addition to

standard measurements like action choices. For example, experiments on level-k strategic

reasoning might ask subjects to explain their action choices; such descriptions, while difficult

to analyze quantitatively, can provide insight about subjects’ reasoning processes and help

establish whether they employ a level-k heuristic.
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The Coarse Bayesian framework lends itself quite naturally to such data: its leading

interpretations involve boundedly-rational thinking procedures or heuristics that subjects

might knowingly engage in. For example, if asked to explain their assessments, Coarse

Bayesians following the competing-theories heuristic might explicitly describe how they nar-

rowed down the possibilities and decided which one best fits the data, while those adhering

to a limited-computation heuristic might describe how they arrived at their approximation.

Going beyond such descriptions, an analyst might ask subjects more concrete questions

targeting the various interpretations of, and mechanisms for, Coarse Bayesian behavior.

Questions like “what would it take to change your mind?” probe a subject’s standard of

proof for switching between competing theories, while eliciting ranges of beliefs or asking

for a 90% confidence interval can help tease out limited-computation heuristics. Asking

subjects to classify their beliefs (eg, “high/medium/low” likelihood of a given state) can

capture categorical thinking, and asking whether they incorporated a piece of information

into their analysis or how similar they consider different pieces of information to be can

capture signal distortion. These approaches provide yet another way to test the model or

weigh it against competing explanations.

3.2 Dynamics

This section examines some basic dynamic properties of the model. Suppose an agent ob-

serves a sequence of signals s⃗ = (s1, . . . , sn), where st is the signal generated in period t.

How do properties of s⃗ affect the agent’s final belief? Must beliefs converge to the truth?

For standard Bayesians, terminal beliefs do not depend on how signals are pooled or

ordered. For example, consider a sequence s⃗ = (s1, s2, s3). The terminal Bayesian belief

is B(µe|s1s2s3) regardless of whether the sequence is rearranged (eg. (s2, s1, s3)), pooled

differently (eg. (s1, s2s3)), or both.15 Another feature of Bayesian updating is that, for

sufficiently informative structures σ, repeated draws of signals from σ make beliefs converge

to the truth (a point mass δω on the true state ω). More precisely, suppose the true state is ω

and that for every n, sn is an independent draw from σ (if t ∈ σ, then sn = t with probability

tω). For a Bayesian, the sequence (sn)∞n=1 induces a sequence (Bn)∞n=1 of beliefs Bn =

B(µe|s1s2 . . . sn) such that Bn → δω almost surely, provided σ is sufficiently informative.16

Under non-Bayesian updating, including Coarse Bayesian updating, dynamics are more

nuanced. For example, the terminal belief of an agent who incorporates the full history of

15See Cripps (2018) for a general analysis of updating rules that are invariant to how an agent partitions
histories of signals.

16For example, the uninformative structure σ = e yields Bn = µe for all n, so that beliefs converge to µe

instead of δω. For beliefs to converge to the truth, the distribution over signals s ∈ σ for state ω (that is,
the row of matrix σ corresponding to state ω) must differ from that of other states.
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signal realizations typically differs from that of one who performs signal-by-signal updating.

Similarly, matters of belief convergence depend not only on σ, but on how the (static)

non-Bayesian updating rule is extended to a dynamic updating rule. Fortunately, Coarse

Bayesian updating yields fairly simple results.

Some additional terminology and notation is needed to proceed. A signal s is interior

if sω > 0 for all ω ∈ Ω; let S0 denote the set of interior signals. A dynamic updating

rule associates a belief µ(s1,...,sn) to every finite history s⃗ = (s1, . . . , sn) of interior signals.

Interpreting a signal s as a history of length 1, a dynamic updating rule gives rise to an

updating rule with prior µe.

Definition 2. A dynamic updating rule µ is:

(i) Invariant to signal ordering if µs⃗ = µπ(s⃗) for all histories s⃗ and permutations π(s⃗)

of s⃗.

(ii) Invariant to signal pooling if, for all histories s⃗ = (s1, . . . , sn) of length n ≥ 2 and

all k < n, µs⃗ = µ(s1,...,sk−1,sksk+1,sk+2,...,sn).

Definition 2 formalizes two different notions of history independence. Under invariance to

signal ordering, any history s⃗ can be reordered without affecting the final belief.17 Invariance

to signal pooling, by contrast, requires that any signal in a history can be pooled with its

successor without affecting the final belief. Clearly, invariance to signal pooling implies

invariance to signal ordering.

Consider first the following dynamic extension of a Coarse Bayesian updating rule:

Definition 3. A dynamic updating rule µ is a Pooled Coarse Bayesian updating rule if

either of the following equivalent conditions hold:

(i) There is a Coarse Bayesian Representation ⟨P , µP⟩ such that, for all histories (s1, . . . , sn),

µ(s1,...,sn) = µP where B(µe|s1s2 . . . sn) ∈ P ∈ P .

(ii) There is a Signal Distortion Representation d : S → S such that, for all histories

(s1, . . . , sn), µs = B(µe|d(s1s2 . . . sn)).

A Pooled Coarse Bayesian updating rule works by applying, at every n, the full history of

signals up to that point. The pooled signal s1s2 . . . sn represents the joint likelihood of having

17Rabin and Schrag (1999) analyze a model of history-dependent updating where, in each period, in-
formation is distorted to support the agent’s current belief. Such procedures are not invariant to signal
ordering.
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observed the sequence, and these likelihoods are applied either to the Coarse Bayesian Rep-

resentation ⟨P , µP⟩ or its associated Signal Distortion Representation d. Naturally, Pooled

Coarse Bayesian updating rules are invariant to signal pooling and, hence, signal ordering.

To study belief convergence, an additional definition is needed. A Coarse Bayesian Rep-

resentation ⟨P , µP⟩ is stable at ω if there exists P ∈ P and ε > 0 such that the ε-ball

{µ̂ ∈ ∆ : ∥µ̂ − δω∥ < ε} around δω is contained in P . The next result summarizes the

dynamic properties of Pooled Coarse Bayesian updating rules.

Proposition 2. Pooled Coarse Bayesian updating rules are invariant to signal ordering and

pooling. If ⟨P , µP⟩ is stable at ω, (sn)∞n=1 is the stochastic sequence generated by σ in state

ω (that is, sn = t ∈ σ with probability tω), and B(µe|s1 . . . sn) a.s.→ δω, then µ(s1,...,sn) a.s.→ µP ,

where δω ∈ P ∈ P.

Proposition 2 states that if ⟨P , µP⟩ is stable at ω and σ is sufficiently informative for

Bayesian beliefs to converge to δω, then Pooled Coarse Bayesian beliefs converge to the

representative µP of the cell P containing δω. Thus, Pooled Coarse Bayesian beliefs converge

whenever Bayesian beliefs do, but not necessarily to the point δω.

Next, consider the following two types of signal-by-signal updating:

Definition 4. A dynamic updating rule µ is:

(i) A Sequential Coarse Bayesian updating rule if there is a Coarse Bayesian Repre-

sentation ⟨P , µP⟩ for histories of length 1 such that, for every history (s1, . . . , sn) of

length n ≥ 2, µ(s1,...,sn) = µP where B(µ(s1,...,sn−1)|sn) ∈ P ∈ P .

(ii) A Sequential Signal Distortion updating rule if there is a Signal Distortion Repre-

sentation d : S0 → S0 for histories of length 1 such that, for every history (s1, . . . , sn)

of length n ≥ 2, µ(s1,...,sn) = B(µ(s1,...,sn−1)|d(sn)).18

A Sequential Coarse Bayesian updating rule employs a fixed Coarse Bayesian Representa-

tion to perform signal-by-signal updating. Starting at prior µe, the agent applies ⟨P , µP⟩ to
reach posterior µs1 after observing s1. Then, treating µs1 as the prior, the agent applies the

same representation ⟨P , µP⟩ to reach posterior µ(s1,s2) after observing s2, and so on. A Se-

quential Signal Distortion rule follows a similar procedure, substituting d for ⟨P , µP⟩. Thus,
sequential rules apply to agents who have imperfect memory and rely on current beliefs as

summary statistics of the history.

18Restricting d to take values in S0 ensures thatB(µ(s1,...,sn−1)|d(sn)) is well defined at all possible histories.
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Proposition 3. Let µe have full support. Then:

(i) Sequential Signal Distortion rules are invariant to signal ordering but not necessarily

to signal pooling.

(ii) Sequential Coarse Bayesian updating rules need not be invariant to signal ordering nor

to signal pooling. If there are full-support representatives µP ̸= µP ′
and a signal s∗ such

that both B(µP |s∗) ∈ P and B(µP ′ |s∗) ∈ P , then the updating rule is not invariant to

signal ordering.

Proposition 3 establishes that the path-dependence properties of sequential updating rules

depend on how the static rule is extended to a dynamic rule: Sequential Signal Distortion

rules are invariant to signal ordering, but Sequential Coarse Bayesian rules need not satisfy

either type of path-independence. The requirements specified by the second part of (ii) are

satisfied by many Coarse Bayesian rules; such rules fail to be invariant to signal ordering and,

therefore, fail to be invariant to signal pooling as well. Intuitively, these differences stem

from the fact that fixing d while updating beliefs signal-by-signal effectively yields different

Coarse Bayesian Representations at different histories, making Sequential Signal Distortion

rules quite different from Sequential Coarse Bayesian rules.

The distinction between Sequential Coarse Bayesian and Signal Distortion rules also has

implications for belief convergence. In general, sequences of beliefs induced by Sequential

Coarse Bayesian rules need not converge to the true state, or even to converge at all. Sequen-

tial Signal Distortion rules, however, do induce belief convergence, though not necessarily to

the true state:

Proposition 4. Suppose µ is a Sequential Signal Distortion rule with distortion function d.

Fix σ = [t1, . . . , tJ ] and ω ∈ Ω. Let (sn)∞n=1 denote a sequence of random vectors sn ∈ σ

independently and identically distributed by σ in state ω (for all n, sn = tj ∈ σ with probability

tjω). Let

t∗ = d(t1)t
1
ωd(t2)t

2
ω . . . d(tJ)t

J
ω :=

(
d(t1)

t1ω
ω′d(t

2)
t2ω
ω′ . . . d(t

J)
tJω
ω′

)
ω′∈Ω

. (2)

Then µ(s1,...,sn) → B(µe|tE∗) almost surely, where E∗ = {ω′ ∈ Ω : t∗ω′ ≥ t∗ω′′ ∀ω′′ ∈ Ω} and

tE∗ = 1[ω′∈E∗] ∈ S is the indicator vector for E∗.

Proposition 4 states that, in the limit, Sequential Signal Distortion narrows the set of pos-

sible states down to E∗ = argmaxω′ t∗ω′ , where t∗ is the “average” distorted signal generated

by σ in state ω. For standard Bayesians, E∗ = {ω} provided σ is sufficiently informative.

As the next example illustrates, however, E∗ need not contain the true state; thus, although

26



beliefs converge, they need not converge to the true state.

Example 1. Consider a two-state setting. Let

d(s) =

e if s2
s1

≤ 3

(1
4
, 1) otherwise

and σ = [s, t] where s = (1
5
, 4
5
) and t = (4

5
, 1
5
). Then d(s) = (1

4
, 1) and d(t) = e, so that in

state 1 we have t∗ := d(s)s1d(t)t1 = ((1
4
)1/5, 1). Since t∗1 < t∗2, beliefs converge to state 2.

4 The Value of Information

Assessing the value of information is a fundamental part of decision making in many economic

models. In this section, I study the Coarse Bayesian value of information, including its

relationship to the Bayesian value of information, the Blackwell (1951) ordering, and notions

of cognitive sophistication and bias.

Throughout this section, µ denotes an updating rule with Coarse Bayesian Representation

⟨P , µP⟩. Let A denote the set of all nonempty, compact subsets of RΩ. Each A ∈ A is a

menu and elements x = (xω)ω∈Ω ∈ A represent feasible actions the agent may take. Action

x ∈ A yields payoff xω in state ω. For each A ∈ A and s ∈ S, let cs(A) := argmaxx∈A x · µs

denote the actions in A that maximize expected utility at beliefs µs.

Definition 5. Let A ∈ A.

(i) The value of information at A is given by the function V A : E → R where

V A(σ) := max
∑
ω

µe
ω

∑
s∈σ

sωx
s
ω subject to xs ∈ cs(A). (3)

(ii) The Bayesian value of information at A is given by the function V
A
: E → R where

V
A
(σ) := max

∑
ω

µe
ω

∑
s∈σ

sωx
s
ω subject to xs ∈ argmax

x∈A
x · sµe

s · µe
. (4)

Equation (3) expresses ex-ante expected utility for a Coarse Bayesian agent. Faced with

a menu A and experiment σ, the agent calculates expected utility by applying weight µe
ω

to the average payoff in state ω given that signals are generated by σ. Consistent with the

Cognizance axiom, the agent correctly forecasts his own signal-contingent beliefs and, hence,
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signal-contingent choices. Equation (4) expresses a similar formula for a Bayesian agent:

signal-contingent choices maximize expected utility at beliefs B(µe|s) instead of beliefs µs.

It will be convenient to express V A in a slightly different form. For any µ̂ ∈ ∆ and

A ∈ A, let

cµ̂(A) := argmax
x∈A

x · µP subject to µ̂ ∈ P and vA(µ̂) := max
x∈cµ̂(A)

x · µ̂.

That is, cµ̂(A) consists of the actions in A that maximize expected utility for the Coarse

Bayesian if the Bayesian posterior is µ̂. Similarly, vA(µ̂) represents expected utility at A

conditional on Bayesian posterior µ̂. These mappings are well-defined because P partitions

∆ and each cell P ∈ P has a unique representative µP . For a standard Bayesian, analogous

mappings are given by

cµ̂(A) := argmax
x∈A

x · µ̂ and vA(µ̂) := max
x∈cµ̂(A)

x · µ̂.

If σ ∈ E and µ̂ ∈ ∆, let τσ(µ̂) :=
∑

s∈σ:B(µe|s)=µ̂ s · µe; this is the total probability of

generating Bayesian posterior µ̂ under information σ and prior µe. That is, given µe, σ

generates a distribution of Bayesian posteriors where τσ(µ̂) is the probability of posterior µ̂.

Proposition 5. For all A ∈ A and σ ∈ E, V A(σ) =
∑

µ̂∈∆ τσ(µ̂)vA(µ̂).

Proposition 5 states that V A can be written in posterior-separable form. In particular, it

is as if the agent associates value vA(µ̂) to Bayesian posterior µ̂, so that the distribution of

Bayesian posteriors can be used to calculate expected utility. This also facilitates compar-

isons between Bayesian and Coarse Bayesian payoffs (see Figure 5); clearly, vA(µ̂) ≤ vA(µ̂)

for all µ̂ and, hence, V A(σ) ≤ V
A
(σ) for all σ—the Bayesian always does better. Intuitively,

Proposition 5 holds because a Coarse Bayesian updating rule is Homogeneous and, hence, a

function of the Bayesian posterior;19 I omit the straightforward proof.

4.1 The Blackwell Ordering

This section examines whether and when Coarse Bayesians benefit from improvements to

information. For experiments σ, σ′, the relation σ ⊒ σ′ indicates that σ is more informative

than σ′ in the sense of Blackwell (1951). An experiment σ′ is a garbling of σ if there is a

matrix M with entries in [0, 1] such that every row is a probability distribution and σ′ = σM .

19This is the fundamental assumption of de Clippel and Zhang (2022), who study persuasion with non-
Bayesian agents. A similar result appears in Galperti (2019).
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x · µ̂

y · µ̂

z · µ̂

µ̂

(a) vA(µ̂)

x · µ̂

y · µ̂

z · µ̂

µ̂
µP µP ′

µP ′′

(b) vA(µ̂)

Figure 5: Bayesian vs. Coarse Bayesian value of information for A = {x, y, z}.

For the purposes of this paper, ⊒ is defined by: σ ⊒ σ′ if and only if σ′ is a garbling of σ.

The function V A satisfies the Blackwell ordering if σ ⊒ σ′ implies V A(σ) ≥ V A(σ′); if

there exists σ ⊒ σ′ such that V A(σ) < V A(σ′), then V A violates the Blackwell ordering.

An important part of Blackwell’s characterization is that a Bayesian’s value of information

satisfies the Blackwell ordering in all menus A—in fact, σ ⊒ σ′ if and only if V
A
(σ) ≥ V

A
(σ′)

for all A ∈ A. For Coarse Bayesians, this need not be the case.

For every menu A and signal s, let bs(A) ⊆ A denote the Bayesian-optimal actions

in A conditional on s. Formally, bs(A) := {x ∈ A : x · sµe

s·µe ≥ y · sµe

s·µe ∀y ∈ X}. Let

c(A) =
⋃

s∈S c
s(A) and b(A) =

⋃
s∈S b

s(A). That is, c(A) is the set of actions in A that are

chosen by the Coarse Bayesian—and b(A) the set of actions chosen by the Bayesian—for at

least one s. Observe that, by Confirmation, c(A) ⊆ b(A).

Proposition 6. Let ⟨P , µP⟩ be a regular Coarse Bayesian Representation and A ∈ A. The

following are equivalent:

(i) V A satisfies the Blackwell ordering.

(ii) vA is convex.

(iii) cs(A) ∩ bs(c(A)) ̸= ∅ for all s.

Proposition 6 characterizes, for regular Coarse Bayesians, the class of menus A such

that V A satisfies the Blackwell ordering.20 The key property is (iii), asserting that Coarse

Bayesian choices from A agree with Bayesian choices from the menu c(A) ⊆ A (the submenu

20The regularity requirement only serves to establish (i) ⇒ (iii). In particular, the implication (iii) ⇒ (i)
holds for all Coarse Bayesian Representations, as does the equivalence of (i) and (ii). The implication
(ii) ⇒ (i) is part of Blackwell’s characterization, but the converse implication is not, and relies on the
assumption that µe has full support (see Lemma 1 in the appendix).
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of actions that are actually chosen at some signal realization). When (iii) is satisfied, Coarse

Bayesian behavior at A coincides with Bayesian behavior at c(A), making vA = vc(A) convex

and V A = V
c(A)

satisfy the Blackwell ordering. Since (iii) is a rather strong requirement,

Blackwell violations are a common occurrence.21

Example 2. Some non-Bayesians satisfy the Blackwell ordering in all menus. Suppose

N = 2, so that ∆ is represented by the interval [0, 1] of values µ̂1. First, consider ⟨P , µP⟩
where P contains two cells: P = {0} and P ′ = (0, 1]. Assume µP ′

< 1. Then, for every A,

vA is convex; this implies V A satisfies the Blackwell ordering, even though choices generated

by ⟨P , µP⟩ violate condition (iii) of Proposition 6 in some menus. Next, let ⟨Q, µQ⟩ consist
of a cell Q = [0, µ∗] where 0 < µ∗ < 1 and, for every µ̂ > µ∗, a singleton cell {µ̂}. Let

µQ = µ∗. Choices generated by ⟨Q, µQ⟩ satisfy condition (iii) of Proposition 6 for all A; this

implies the corresponding value of information function satisfies the Blackwell ordering in

all menus, even though ⟨Q, µQ⟩ violates the regularity assumption (see footnote 20).

Example 2 shows it is possible for non-Bayesian representations to generate functions

V A satisfying the Blackwell ordering for all A with or without condition (iii) of Proposition

6. Such representations are quite rare, however, in that small perturbations of the cells or

representative points guarantee that V A violates both the Blackwell ordering and condition

(iii) for some A. Intuitively, violations of the Blackwell ordering arise through discontinuities

in vA because such discontinuities, except possibly on the boundary of ∆, make vA non-

convex. Most non-Bayesian representations have the property that any violation of (iii)

introduces a non-convexity in vA for some A because the gap between Bayesian and non-

Bayesian choices creates points of discontinuity. For regular representations, violations of

(iii) are both necessary and sufficient for the existence of such discontinuities.

While it is perhaps not too surprising that non-Bayesian updating can generate violations

of the Blackwell ordering, it turns out that, for Coarse Bayesians, the connection to the

Blackwell ordering runs much deeper:

Proposition 7. Suppose ⟨P , µP⟩ and ⟨Q,
•

µQ⟩ are regular Coarse Bayesian Representations

of µ and
•

µ, respectively, such that µe =
•

µe. The following are equivalent:

(i) ⟨P , µP⟩ = ⟨Q,
•

µQ⟩.

(ii) For all σ ⊒ σ′ and A ∈ A, V A(σ) ≥ V A(σ′) ⇔
•

V A(σ) ≥
•

V A(σ′).

21See Whitmeyer (2023) for a recent characterization of updating rules for which the associated value
functions satisfy the Blackwell ordering in all menus.
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Proposition 7 states that, for a regular Coarse Bayesian, the parameters ⟨P , µP⟩ are

pinned down by the agent’s ranking of Blackwell-comparable experiments. Thus, by observ-

ing when the agent benefits (or expects to benefit) from a Blackwell improvement, one can

uniquely identify the parameters of the representation. A key takeaway, then, is not just

that Coarse Bayesians exhibit violations of the Blackwell ordering, but that they do so in a

way that fully reveals their individual updating behavior.

4.2 Measures of Sophistication and Bias

In this section, I explore different notions of cognitive ability and how they relate to a Coarse

Bayesian’s value of information. In addition to providing basic comparative static results

for the model, the findings are potentially relevant for endogenizing non-Bayesian updating

rules and, hence, developing theories of where they “come from” (see the discussion at the

end of the section). For any updating rule µ and signal s ∈ S, let

Dµ(s) :=

∥∥∥∥ sµe

∥sµe∥
− µs

∥µs∥

∥∥∥∥ .
This is the Euclidean distance between µs and the Bayesian posterior sµe

s·µe after normalizing

each vector to length 1. Thus, Dµ(s) provides a measure of how distorted the agent’s beliefs

are at signal s.

Definition 6. Suppose µ and
•

µ have full-support priors µe =
•

µe and Coarse Bayesian

Representations ⟨P , µP⟩ and ⟨Q,
•

µQ⟩, respectively. Then:

(i)
•

µ is more sophisticated than µ if every P ∈ P is a union of cells in Q.

(ii)
•

µ is less biased than µ if D •
µ(s) ≤ Dµ(s) for all s ∈ S.

Definition 6 provides two comparative notions of cognitive ability. Part (i) states that a

Coarse Bayesian is more sophisticated if he employs a finer partition, while part (ii) states

the agent is less biased if, for every signal, posterior beliefs are closer to the Bayesian pos-

terior. Each ordering captures some aspect of what it means to be “more Bayesian,” but

the two concepts are quite different: higher sophistication entails higher responsiveness to

information, while lower bias entails less skewness in the updating rule (see Figure 6).

The goal of this section is to characterize these orderings in terms of the welfare of the

agent. A natural conjecture, for example, is that a more sophisticated agent always enjoys

a higher expected utility than a less sophisticated agent, or benefits from more information

whenever a less sophisticated agent does. As the next example shows, this conjecture is false.
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µe

(a) More biased

µe

(b) Less biased

Figure 6: An illustration of the bias ordering. The two updating rules employ the same pair
feasible beliefs, but rule (b) is less biased than rule (a) because it exhibits smaller distortions
away from Bayesian posteriors; this makes the cutoff between cells more “centered.”

Example 3. Consider a two-state setting, so that ∆ = [0, 1]. Let P = {P, P ′} where

P = {0} and P ′ = (0, 1] and Q = {Q,Q′, Q′′} where Q = {0}, Q′ = [3
4
, 1], and Q′′ = (0, 3

4
).

Finally, let µP =
•

µQ = 0, µe = µP ′
= 4

5
=

•

µQ′
=

•

µe, and
•

µQ′′
= 1

3
. Clearly,

•

µ is more

sophisticated than µ. Let A = {x, y} where x = (1, 0) and y = (0, 1). Then

vA(µ̂1) =

1 if µ̂1 = 0

µ̂1 otherwise
and

•

vA(µ̂1) =

1− µ̂1 if µ̂1 <
3
4

µ̂1 otherwise
,

so that
•

vA(µ̂1) < vA(µ̂1) for 1
2
< µ̂1 < 3

4
. Thus,

•

V A(σ) < V A(σ) for some σ (for example,

any σ such that τσ(2
3
) = 3

5
and τσ(1) = 2

5
). Moreover, vA is convex but

•

vA is not; thus, V A

satisfies the Blackwell ordering but
•

V A does not.

In general, greater sophistication need not improve welfare because it does not rule out

the possibility of wider gaps between Bayesian and Coarse Bayesian choices at some menu-

signal pairs. Similarly, lower bias need not imply welfare improvements. At the end of

this section, I return to this question and examine the conditions under which one Coarse

Bayesian is better off than another in all decision problems (Proposition 10).

To characterize the sophistication ordering, an additional definition is required. Given

⟨P , µP⟩, a pair (A, σ) is µP-decisive if cs(A) is a singleton for all s ∈ σ; that is, if every

posterior µP induced by σ yields a unique optimal action in A. For any σ, σ′ ∈ E , V (σ) =

V (σ′) µP-decisively if V A(σ) = V A(σ′) for all A such that (A, σ) and (A, σ′) are µP-decisive.

Proposition 8. Suppose ⟨P , µP⟩ and ⟨Q,
•

µQ⟩ are regular Coarse Bayesian Representations

of µ and
•

µ, respectively, and that µe =
•

µe. The following are equivalent:

(i)
•

µ is more sophisticated than µ.

(ii) If σ, σ′ ∈ E and
•

V (σ) =
•

V (σ′)
•

µQ-decisively, then V (σ) = V (σ′) µP-decisively.

This result states that for regular Coarse Bayesians, greater sophistication means welfare

is more responsive to information: as sophistication increases, fewer pairs σ, σ′ yield identical
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ex-ante expected utility for (almost) all menus A. The proof of Proposition 8 shows that the

characterization holds even if one restricts attention to experiments σ, σ′ that are Blackwell

comparable. Thus, higher sophistication means greater responsiveness to improvements to

information. More-responsive welfare, of course, does not imply greater welfare.

The characterization of the bias ordering does not involve the responsiveness of welfare,

but rather a comparison to that of a Bayesian. For each s ∈ S and A ∈ A, let V
A
(s) :=

vA(B(µe|s)) and V A(s) := vA(B(µe|s)) denote the Bayesian and Coarse Bayesian payoffs at

menu A conditional on signal s. Let

Lµ(s) := sup
A∈A∗

V
A
(s)− V A(s)

where A∗ denotes the set of menus A such that ∥x∥ ≤ 1 for all x ∈ A. Intuitively, Lµ(s)

is the maximum loss, relative to a Bayesian, that the Coarse Bayesian can incur under any

decision problem A.22 Alternatively, Lµ(s) may be interpreted as the maximum rate at which

a Bayesian agent can “money pump” the Coarse Bayesian agent under public information

s. So, if actions x represent bets or gambles, and a Bayesian agent is free to specify a set

A ∈ A∗ after both agents have observed s, then Lµ(s) is the amount of money the Bayesian

can extract from the Coarse Bayesian.23

Proposition 9. Suppose µ and
•

µ are Coarse Bayesian and µe =
•

µe. Then L •
µ(s) ≤ Lµ(s)

if and only if D •
µ(s) ≤ Dµ(s). Thus,

•

µ is less biased than µ if and only if L •
µ(s) ≤ Lµ(s) for

all s ∈ S.

Proposition 9 establishes that
•

µ is less biased than µ if and only if
•

µ is less exploitable

than µ: worst-case losses for
•

µ, relative to a Bayesian, are smaller than those for µ.

As indicated above, neither greater sophistication nor lower bias guarantee higher payoffs

in all decision problems. The next result establishes that, under mild regularity conditions, a

particular refinement of these orderings is needed to improve payoffs in all decision problems.

Proposition 10. Suppose ⟨P , µP⟩ and ⟨Q,
•

µQ⟩ are Coarse Bayesian Representations of µ

and
•

µ such that µe =
•

µe and non-singleton cells are regular. The following are equivalent:

(i)
•

vA(µ̂) ≥ vA(µ̂) for all A ∈ A and µ̂ ∈ ∆.

(ii)
•

µ is less biased, more sophisticated and, for every
•

µQ ∈ •

µQ\µP , the cell Q is a singleton.

22The restriction to normalized menus A ∈ A∗ is needed because V λA = λV A for all λ > 0.
23Indeed, as shown in the appendix, one may restrict attention to menus of the form A = {0, x} where,

conditional on s, the Bayesian prefers the safe option 0 but the Coarse Bayesian strictly prefers x. On
average, the Bayesian profits by |x ·B(µe|s)|.
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Proposition 10 states that payoffs increase at all menu-signal pairs if and only if the agent

becomes more sophisticated and all “new” feasible posteriors
•

µQ represent singleton cells Q.

This means the agent becomes perfectly Bayesian on a subset of ∆, blocking new or different

distortions that yield lower payoffs in some menu-signal pair. It follows immediately that

the agent is less biased and that
•

V A(σ) ≥ V A(σ) for all A and σ.

I conclude this section with a brief discussion of how my results might enable various

approaches for selecting or endogenizing Coarse Bayesian updating rules. One approach is to

solve for an optimal updating rule in a given environment—a menu and signaling structure—

under some constraint (for example, a fixed number of cells or a cost per additional cell).

Pioneered by Wilson (2014) and Brunnermeier and Parker (2005), versions of this approach

can provide a theory of where the updating rule “comes from.” A drawback is that an updat-

ing rule adapted to one environment may be ill-suited for another. Only the robust ordering

given by statement (ii) of Proposition 10 ensures weakly greater payoffs at all menu-signal

pairs. So, rather than considering updating rules adapted to specific environments, one

might instead endogenize them by selecting rules that are unimprovable (given costs or con-

straints) under the robust ordering. Alternatively, one might consider the weaker objective

of minimizing worst-case losses (Proposition 9). These approaches are suitable if agents are

unable to form probabilistic beliefs about their environment and, consequently, seek heuris-

tics robust to such uncertainty. Naturally, different criteria yield different predictions about

updating rules; minimization of worst-case losses, for example, leads to representations ex-

hibiting less skewness. Analysis of endogenous updating rules is beyond the scope of this

paper, but—as illustrated by the characterizations in this section—the framework of Coarse

Bayesian updating provides a natural and tractable setting in which to carry it out.

5 Conclusion

In this paper, I have proposed a simple generalization of Bayes’ rule, Coarse Bayesian up-

dating, that can account for a variety of biases and individual heterogeneity in updating

behavior. Three axioms—Homogeneity, Cognizance, and Confirmation—fully characterize

the model and have the property that strengthening any of them to an if-and-only-if form

makes the agent fully Bayesian. Thus, Coarse Bayesian updating may be viewed as a “small”

departure from Bayes’ rule, and there is a clear separation between the properties of Bayes’

rule that are satisfied by proper Coarse Bayesians and those that are necessarily violated.

An advantage of the framework is that it employs standard primitives that frequently

appear in applications. The use of noisy signals over a state space, for example, allows one

to import Coarse Bayesian updating into familiar settings in economics and game theory. I
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illustrate this by embedding the model in a standard setting of decision under risk, leading

to a close relationship with the Blackwell ordering and comparative notions of cognitive

sophistication and bias. I leave further development of such applications to future work.

A Proofs

A.1 Proof of Theorem 2

First, suppose µ has a Coarse Bayesian Representation. Note that for every s ∈ S the signal
µs/µe

∥µs/µe∥ is well-defined because µe has full support. Define d : S → S by

d(s) =

s if µs = B(µe|s)
µs/µe

∥µs/µe∥ otherwise
.

It is straightforward to verify that µs = B(µe|d(s)) for all s and that d satisfies properties

(i)–(iii) of Theorem 2.

Conversely, suppose µ has a Signal Distortion Representation d. Define a binary relation

∼ on S by s ∼ t if and only if d(s) ≈ d(t). Clearly, ∼ is an equivalence relation; thus,

its equivalence classes partition S. By (i) and (ii), each equivalence class is a convex cone.

Thus, as in the proof of Theorem 1, each equivalence class is associated with a convex subset

of ∆, and these subsets form a partition P of ∆. For each cell P ∈ P , let µP := B(µe|d(s))
such that s belongs to the equivalence class associated with P . By (iii), µP ∈ P .

A.2 Proof of Proposition 1

It is straightforward to verify that Bayesian updating satisfies properties (i)–(iii). So, suppose

µ has a Coarse Bayesian Representation ⟨P , µP⟩. We show that each of properties (i)–(iii)

forces each cell of P to be a singleton, making the agent Bayesian.

For (i), suppose µs = µt implies s ≈ t. Let P ∈ P and µ̂, µ̂′ ∈ P . Choose signals s, t

such that B(µe|s) = µ̂ and B(µe|t) = µ̂′. Then µs = µt = µP , so that s ≈ t and, hence,

µ̂ = B(µe|s) = B(µe|t) = µ̂′. Thus, every cell P ∈ P is a singleton.

For (ii), suppose µs+t = µs implies µs = µt. Suppose toward a contradiction that P
contains a non-singleton cell P . Since µ is non-constant, there exists P ′ ∈ P such that

µP ̸= µP ′
. Since µe has full support, there exist signals ŝ, t̂ such that B(µe|ŝ) = µP and

B(µe|t̂) = µP ′
; thus, µαŝ = µP and µβt̂ = µP ′

for all α, β ∈ (0, 1). By equation (1) in the

main text, it follows that if αŝ + βt̂ ∈ S, then B(µe|αŝ + βt̂) = αŝ·µe

(αŝ+βt̂)·µeµ
P + βt̂·µe

(αŝ+βt̂)·µeµ
P ′
,
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which converges to µP as β → 0. By regularity of P , there is an ε-ball Bε ⊆ P around µP .

Thus, for sufficiently small α, β ∈ (0, 1), we have µαŝ+βt̂ ∈ S and B(µe|αŝ + βt̂) ∈ Bε; but

then µαŝ+βt̂ = µP = µαŝ while µβt̂ = µP ′ ̸= µP , contradicting property (ii).

For (iii), suppose µt = µs implies t ≈ µs/µe. Consider the case t = s. Then µt = µs, so

s = t ≈ µs/µe. This implies µs ≈ sµe, so that µs = B(µe|s).

A.3 Proof of Proposition 2

Suppose µ is a Pooled Coarse Bayesian updating rule induced by a representation ⟨P , µP⟩
that is stable at ω. Let {sn}∞n=1 denote a sequence of signal realizations from σ such that

B(µe|s1 . . . sn) → δω, and {Bn}∞n=1 the associated sequence of Pooled Coarse Bayesian beliefs;

formally, Bn := µP such that B(µe|s1 . . . sn) ∈ P ∈ P . By stability at ω, there is an ε > 0

and a cell P ∗ ∈ P such that the ε-ball in ∆ around δω is a subset of P ∗. Thus, for all n

sufficiently large, B(µe|s1 . . . sn) ∈ P ∗ and, hence, Bn = µP ∗
. So, if B(µe|s1 . . . sn) → δω

almost surely, then µ(s1,...,sn) = Bn → µP ∗
almost surely.

A.4 Proof of Proposition 3

For (i), let µ be a Sequential Signal Distortion rule. Observe that for every signal r, µr =

B(µe|d(r)) ≈ d(r)µe. It follows immediately that µ(s,t) ≈ d(t)d(s)µe ≈ µ(t,s), so that µ

is invariant to signal ordering. However, µ need not be invariant to signal ordering. For

example, consider a model with two states and distortion function

d(s) =

(1/5, 4/5) if s2
s1

≥ 2

e else
.

Let s = (1/5, 4/5) and t = (3/4, 1/4). Then st = (3/20, 4/20), d(st) = e, d(s) = (1/5, 4/5),

and d(t) = e; thus, d(s)d(t) = (1/5, 4/5) ̸= e = d(st), so that µ(s,t) ̸= µst.

For (ii), consider a Sequential Coarse Bayesian updating rule satisfying all requirements

in the second part of the statement. Since µe has full support, there is a signal r such that

B(µe|r) = µP . Similarly, there is a signal t such that B(µP |t) = µP ′
because µP has full

support. It follows that µ(r,t,s∗) = µP ̸= µP ′
= µ(r,s∗,t).

A.5 Proof of Proposition 4

Given a finite sequence s1, . . . , sn ∈ σ = [t1, . . . , tJ ] and 1 ≤ j ≤ J , let nj denote the number

of signals si such that si = tj. Then µ(s1,...,sn) = B(µe|rn) where rn := d(s1)d(s2) . . . d(sn) =
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d(t1)n1d(t2)n2 . . . d(tJ)nJ . Observe that, in state ω,
nj

n
→ tjω almost surely. Thus,

(rn)1/n := d(t1)n1/nd(t2)n2/n . . . d(tJ)nJ/n → d(t1)t
1
ωd(t2)t

2
ω . . . d(tJ)t

J
ω := t∗

almost surely. Consider the likelihood ratio ℓnω′,ω′′ :=
rn
ω′

rn
ω′′
. If

t∗
ω′

t∗
ω′′

< 1, then ℓnω′,ω′′ → 0 almost

surely because ℓnω′,ω′′ =
(

(rn
ω′ )

1/n

(rn
ω′′ )

1/n

)n

and
(rn

ω′ )
1/n

(rn
ω′′ )

1/n → t∗
ω′

t∗
ω′′

∈ [0, 1) almost surely. So, take any

ω∗ ∈ E∗. Then, as n → ∞, we have

B(µe|rn) = B

(
µe

∣∣∣∣ 1

t∗ω∗
rn
)

=
µe rn

t∗
ω∗

µe · rn

t∗
ω∗

a.s.→
µe1[ω′∈E∗]

µe · 1[ω′∈E∗]
= B(µe|tE∗).

A.6 Proof of Proposition 6

Lemma 1. Let φ : ∆ → R and Φ : E → R such that Φ(σ) =
∑

µ̂ φ(µ̂)τ
σ(µ̂). Suppose Φ

satisfies the Blackwell ordering: σ ⊒ σ′ implies Φ(σ) ≥ Φ(σ′). Then φ is convex.

Proof. Let µ̂, µ̂′ ∈ ∆, α ∈ (0, 1), and µ̂α := αµ̂ + (1 − α)µ̂′. Since µe has full support,

there exists µ̂∗ ∈ ∆ and λ ∈ (0, 1] such that λµ̂∗ + (1 − λ)µ̂α = µe. Let σ = [s∗, s, s′] and

σ′ = [s∗, s+ s′] where s∗ = λ µ̂∗

µe , s = (1− λ)α µ̂
µe , and s′ = (1− λ)(1− α) µ̂

′

µe . Clearly, σ ⊒ σ′,

so that Φ(σ) ≥ Φ(σ′). Moreover, µe · s∗ = λ, µe · s = (1− λ)α, µe · s′ = (1− λ)(1− α), and

µe · (s+ s′) = 1−λ, while B(µe|s∗) = µ̂∗, B(µe|s) = µ̂, B(µe|s′) = µ̂′, and B(µe|s+ s′) = µ̂α.

Thus, Φ(σ) = φ(µ̂∗)λ+φ(µ̂)(1−λ)α+φ(µ̂′)(1−λ)(1−α) and Φ(σ′) = φ(µ̂∗)λ+φ(µ̂α)(1−λ),

so that Φ(σ) ≥ Φ(σ′) yields αφ(µ̂) + (1− α)φ(µ̂′) ≥ φ(µ̂α), as desired.

To prove Proposition 6, let A ∈ A and observe that (i) ⇒ (ii) by Lemma 1 (taking

φ = vA). The converse implication, (ii) ⇒ (i), follows from Blackwell’s theorem. To see that

(iii) ⇒ (i), observe that if cs(A) ∩ bs(c(A)) ̸= ∅ for all s, then every Coarse Bayesian choice

from A is Bayesian-optimal in the menu A′ = c(A). Since Coarse Bayesian choices from A

are identical to those from A′, it follows that V A(σ) = V A′
(σ) = V

A′

(σ) for all σ. That is,

V A coincides with the Bayesian value of information in some menu, and therefore satisfies

the Blackwell ordering.

Finally, we prove that (i) ⇒ (iii). Suppose (iii) is violated; that is, there exists s ∈ S

such that cs(A) ∩ bs(c(A)) = ∅. Let µ̂ = B(µe|s). Then there exists x ∈ c(A) such that

vA(µ̂) = x · µ̂ < y · µ̂ for all y ∈ bs(c(A)). Choose any y ∈ bs(c(A)) and P ∈ P such that

y ∈ cµ
P
(A). Let t ∈ S such that B(µe|t) = µP . By regularity, P has full dimension in ∆

and µP belongs to the interior of P ; therefore, we may assume B(µe|s+ t) ∈ P (if necessary,
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scale s and t down by some λ > 0 sufficiently small). Observe that

B(µe|s+ t) =
s · µe

(s+ t) · µe
µ̂+

t · µe

(s+ t) · µe
µP := µ̂′,

and that there exists y′ ∈ cµ
P
(A) such that

vA(µ̂′) = y′ · µ̂′ =
s · µe

(s+ t) · µe
y′ · µ̂+

t · µe

(s+ t) · µe
y′ · µP .

In particular, y′ maximizes the above expression, so we have y′ · µ̂ ≥ y · µ̂ and y′ ·µP = y ·µP

because y ∈ cµ
P
(A). Now let σ = [s, t, e− s− t] and σ′ = [s+ t, e− s− t]. Clearly, σ ⊒ σ′.

Let V A(e− s− t) := vA(B(µe|e− s− t))[(e− s− t) · µe]. Then

V A(σ′) = vA(µ̂′)[(s+ t) · µe] + V A(e− s− t)

= (y′ · µ̂)(s · µe) + (y′ · µP )(t · µe) + V A(e− s− t)

≥ (y · µ̂)(s · µe) + (y · µP )(t · µe) + V A(e− s− t)

> (x · µ̂)(s · µe) + (y · µP )(t · µe) + V A(e− s− t)

= V A(σ).

A.7 Proof of Proposition 7

The implication (i) ⇒ (ii) is clear; the converse follows immediately from the next lemma.

Lemma 2. Suppose ⟨P , µP⟩ and ⟨Q,
•

µQ⟩ are regular representations of µ and
•

µ, respectively,

such that µe =
•

µe. Furthermore, suppose that for all σ ⊒ σ′ and A ∈ A,
•

V A(σ) ≥
•

V A(σ′) ⇒
V A(σ) ≥ V A(σ′). Then Q is finer than P and µP ⊆ •

µQ.

Proof of Lemma 2. The proof is divided into three steps.

Step 1: for every Q ∈ Q, there is a unique P ∈ P such that int(Q) ⊆ int(P ).

First, observe that for every Q ∈ Q there is at least one P ∈ P such that int(Q)∩int(P ) ̸=
∅; this holds because at least one P intersects the (nonempty, by regularity) set int(Q), which

implies int(Q) ∩ int(P ) ̸= ∅ by regularity of Q and P .

So, suppose toward a contradiction that there exist Q ∈ Q and distinct P, P ′ ∈ P such

that int(Q) ∩ int(P ) ̸= ∅ and int(Q) ∩ int(P ′) ̸= ∅. Then there exist µ̂, µ̂′ ∈ int(Q) such

that µ̂ ∈ int(P ) and µ̂′ ∈ int(P ′). Note that µ̂ ̸= µ̂′ since P ∩ P ′ = ∅. Moreover, we may

assume µP /∈ co{µ̂, µ̂′} since, by regularity, we can replace µ̂ with a point in the interior of

co{µP , µ̂′} ∩ P if µP ∈ co{µ̂, µ̂′}. Similarly, we may assume µP ′
/∈ co{µ̂, µ̂′}.
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Next, we argue that it is without loss to assume that either µP /∈ co{µ̂, µ̂′, µP ′} or

µP ′
/∈ co{µ̂, µ̂′, µP}. First, consider the case N = 2 (2 states). Since µP /∈ co{µ̂, µ̂′}

and µP ′
/∈ co{µ̂, µ̂′}, it follows immediately that µP /∈ co{µ̂, µ̂′, µP ′} because otherwise

µP ∈ co{µP ′
, µ̂′} ⊆ P ′. Similarly, µP ′

/∈ co{µ̂, µ̂′, µP}. Now consider the case N ≥ 3.

By regularity, we may assume that the points µ̂, µ̂′, µP , and µP ′
are distinct and not

collinear (regularity allows us to perturb the points if necessary). It follows immediately

that µP /∈ co{µ̂, µ̂′, µP ′} or µP ′
/∈ co{µ̂, µ̂′, µP}.

Suppose µP /∈ co{µ̂, µ̂′, µP ′} (the argument for the other case is similar). Then we may

strictly separate µP and co{µ̂, µ̂′, µP ′}; in particular, there exists x such that x · µP < 0 and

x · µ̃ > 0 for µ̃ ∈ {µ̂, µ̂′, µP ′}. If necessary, perturb x so that x · µQ ̸= 0. Let A = {x, 0} and

s, t ∈ S such that B(µe|s) = µ̂ and B(µe|t) = µ̂′. For sufficiently small α, β > 0, we have

αs + βt ∈ S; moreover, by equation (1) in the main text, B(µe|αs + βt) → µ̂′ as α → 0.

Thus, we assume without loss of generality (replacing s and t with appropriate αs and βt)

that B(µe|s + t) ∈ int(P ′). It follows that cs(A) = cµ
P
(A) = 0 while ct(A) = cs+t(A) =

cµ
P ′
(A) = x. Finally, let σ = [s, t, e − s − t] and σ′ = [s + t, e − s − t]. Clearly, σ ⊒ σ′

and
•

V A(σ) =
•

V A(σ′) since µ̂, µ̂′, and B(µe|s + t) belong to the same cell Q ∈ Q. However,

V A(σ′) > V A(σ) because V A(s + t) > V A(s) + V A(t), where V A(s̃) := vA(B(µe|s̃))(s̃ · µe).

This contradicts the second assumption of the lemma.

We have shown that for every Q ∈ Q, there is a unique P ∈ P such that int(Q)∩int(P ) ̸=
∅. Since P partitions ∆ and cells are regular, it follows that, in fact, int(Q) ⊆ int(P ).

Step 2: µP ⊆ •

µQ.

Suppose toward a contradiction that there is a cell P ∈ P such that µP ̸= •

µQ for all

Q ∈ Q. Let Q denote the (unique) cell in Q such that µP ∈ Q. By regularity, there is

a neighborhood of µP contained in int(P ); since µP ∈ Q, such a neighborhood intersects

int(Q). Thus, by Step 1, int(Q) ⊆ int(P ). Moreover, since µe =
•

µe, we have P ̸= P e and

Q ̸= Qe, where µe ∈ P e ∈ P ,
•

µe ∈ Qe ∈ Q, and int(Qe) ⊆ int(P e). There are two cases:

either µP /∈ co{ •

µQ, µe} or µP ∈ co{ •

µQ, µe}.
If µP /∈ co{ •

µQ, µe}, there exists x such that x · µP < 0 and x · µ̃ > 0 for µ̃ ∈ co{ •

µQ, µe}.
Let A = {x, 0} and s, t ∈ S such that B(µe|s) =

•

µQ and B(µe|t) = µe. As in Step 1,

we may choose s and t so that s + t ∈ S and B(µe|s + t) ∈ int(Qe) ⊆ int(P e). Thus,

cs(A) = cµ
P
(A) = 0 and ct(A) = cs+t(A) = cµ

e
(A) = x. Letting σ = [s, t, e − s − t] and

σ′ = [s + t, e − s − t], it follows that σ ⊒ σ′,
•

V A(σ) =
•

V A(σ′), and V A(σ′) > V A(σ),

contradicting the second assumption of the lemma.

If instead µP ∈ co{ •

µQ, µe}, we may strictly separate µe from co{ •

µQ, µP}: there exists x

such that x · µe < 0 and x · µ̃ > 0 for µ̃ ∈ co{ •

µQ, µP}. Moreover, we may choose x so that
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the line x · µ̂′ = 0 passes through int(P ) and, therefore, so that there exists µ̂ ∈ P so that

x · µ̂ < 0. Let s, t ∈ S so that s+ t ∈ S, B(µe|s) = µ̂, B(µe|t), and B(µe|s+ t) ∈ int(Qe). Let

A = {x, 0}. Then cs(A) = cµ
P
(A) = x and ct(A) = cs+t(A) = 0. Letting σ = [s, t, e− s− t]

and σ′ = [s + t, e − s − t], it follows that σ ⊒ σ′,
•

V A(σ) =
•

V A(σ′), and V A(σ′) > V A(σ),

contradicting the second assumption of the lemma.

Step 3: for every Q ∈ Q, there exists P ∈ P such that Q ⊆ P .

Let Q ∈ Q. By Step 1, there is a unique P ∈ P such that int(Q) ⊆ int(P ). Suppose

toward a contradiction that there exists µ̂ ∈ Q such that µ̂ /∈ P ; such a µ̂ must be on the

boundary of Q, so µ̂ ̸= •

µQ by regularity. Since int(Q) ⊆ int(P ), we also have that µ̂ is on

the boundary of P (otherwise there is a neighborhood of µ̂ contained in the complement of

P ; but every such neighborhood intersects int(Q), contradicting int(Q) ⊆ int(P )).

Since P partitions ∆ and µ̂ /∈ P , there is a cell P ′ ∈ P (P ′ ̸= P ) such that µ̂ ∈ P ′.

By regularity, µP ′ ∈ int(P ′). Moreover, since µ̂ is on the boundary of P , µ̂ is also on the

boundary of P ′. Thus, we may strictly separate µP ′
from the closure of P ; in particular,

there exists x such that x · µP ′
< 0 and x · µ̃ > 0 for µ̃ ∈ co{µ̂, •

µQ}. Choose s, t ∈ S so

that B(µe|s) = µ̂, B(µe|t) =
•

µQ, and B(µe|s + t) ∈ int(Q). Letting σ = [s, t, e − s − t]

and σ′ = [s + t, e − s − t], it follows that σ ⊒ σ′,
•

V A(σ) =
•

V A(σ′), and V A(σ′) > V A(σ),

contradicting the second assumption of the lemma.

A.8 Proof of Proposition 8

For any ⟨P , µP⟩ and P ∈ P , let SP := {s ∈ S : B(µe|s) ∈ P}. For any σ, let sP,σ :=∑
s∈σ∩SP s. Experiments σ and σ′ are P-equivalent if sP,σ = sP,σ

′
for all P ∈ P .

Lemma 3. Suppose ⟨P , µP⟩ is regular and let σ, σ′ ∈ E. Then σ and σ′ are P-equivalent if

and only if V A(σ) = V A(σ′) for every A such that (A, σ) and (A, σ′) are µP-decisive.

Proof. Suppose σ and σ′ are P-equivalent. Observe that for every µP-decisive pair (A, σ̂),

V A(σ̂) =
∑

P∈P(µ
esP,σ̂) · cµP

(A) because decisiveness implies cµ
P
(A) is a singleton for all

P ∈ P where sP,σ̂ ̸= 0. Thus, V A(σ) = V A(σ′) because sP,σ = sP,σ
′
for all P ∈ P .

For the converse, suppose σ and σ′ are not P-equivalent. We construct a menu A such that

(A, σ) and (A, σ′) are µP-decisive but V A(σ) ̸= V A(σ′). For each P ∈ P , let δP := sP,σ−sP,σ
′
.

Since experiments consist of finitely many signals, there are finitely many (but at least two)

cells P such that δP ̸= 0. Let µδ := {µP : δP ̸= 0} and let µP ∗
be an extreme point of the

convex hull of µδ. Since µδ is finite, µP ∗
can be strictly separated from the convex hull of

µδ\{µP ∗}; that is, there exists x such that x · µP ∗
> 0 > x · µP ′

for all µP ′ ∈ µδ\{µP ∗}.
By regularity, we may assume that x is such that the menu A = {x, 0} makes (A, σ) and
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(A, σ′) µP-decisive (if necessary, perturb x so that cs(A) is a singleton for all s ∈ σ ∪ σ′).

Then V A(σ) − V A(σ′) =
∑

P∈P(µ
sδP ) · cµP

(A) = (µeδP
∗
) · x because cµ

P
(A) = 0 for all

µP ∈ µδ\{µP ∗}. Thus, V A(σ) ̸= V A(σ′) provided (µeδP
∗
) · x ̸= 0. Since the separation is

strict and ⟨P , µP⟩ is regular, we may perturb x if necessary to ensure (µeδP
∗
) · x ̸= 0.

Proof that (i) implies (ii). Let σ, σ′ ∈ E and suppose
•

V A(σ) =
•

V A(σ′) for all A such that

(A, σ) and (A, σ′) are
•

µQ-decisive. By Lemma 3, σ and σ′ are Q-equivalent. Since Q is finer

than P , it follows that σ and σ′ are P-equivalent. Thus, by Lemma 3, V A(σ) = V A(σ′) for

all
•

µQ-decisive A.

Proof that (ii) implies (i). Let Q ∈ Q and suppose s, t ∈ SQ. Let σ = [s, t, e − s − t]

(if necessary, scale s and t down by a factor λ > 0 to make σ well-defined), and let σ′ =

[s+ t, e−s− t]. By Convexity, s+ t ∈ SQ and, thus, σ and σ′ are Q-equivalent. By Lemma 3

and the hypothesis of (ii), this implies σ and σ′ are µP-equivalent. Thus, there exists P ∈ P
such that s, t ∈ SP (otherwise, there are distinct cells P ′, P ′′ ∈ P such that s ∈ P ′ and

t ∈ P ′′; but then σ and σ′ are not P-equivalent, as s + t belongs to a single cell). We have

shown that any two signals belonging to a common SQ (Q ∈ Q) belong to a common SP

(P ∈ P). Thus, Q is finer than P .

A.9 Proof of Proposition 9

Fix s ∈ S and let µ∗ = B(µe|s) and µP = µs where µs ∈ P ∈ P . If A ∈ A∗, then there exist

x∗, y∗ ∈ A such that V
A
(s) = x∗ · µ∗ and V A(s) = y∗ · µP . In particular, x∗ · µ∗ ≥ x · µ∗

and y∗ · µP ≥ y · µP for all x, y ∈ A. Let A∗ = {x∗ − x∗, y∗ − x∗} = {0, y∗ − x∗}. Then

V
A
(s)−V A(s) = V

A∗

(s)−V A∗
(s). Hence, to compute Lµ(s), it is without loss of generality

to consider menus of the form {0, y} where ∥y∥ ≤ 1. We therefore rewrite the Lµ(s) as

Lµ(s) = sup
∥y∥≤1

0 · µ∗ − y · µ∗ subject to: 0 · µ∗ ≥ y · µ∗ and y · µP > 0 · µP

= inf
∥y∥≤1

y · µ∗ subject to: 0 ≥ y · µ∗ and y · µP > 0.

The first constraint ensures the Bayesian prefers action 0 over y at signal s while the second

ensures the Coarse Bayesian prefers y over 0 at s. Hence, we seek the infimum of y · µ∗ over

all y on the unit (hyper)sphere bounded by the planes y ·µ∗ ≤ 0 and y ·µP > 0. Clearly, the

infimum is characterized by a point y∗ on the plane y ·µP = 0. Thus, we seek a point on the

disc {y : y · µP = 0 and ∥y∥ ≤ 1} tangent to a plane y · µ∗ = c with normal µ∗. There are

two such points; one maximizes y · µ∗, the other minimizes it.
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Restricting attention to the case µ∗ ̸= µP , the first constraint does not bind. Thus, the

Lagrangian is

L = −y · µ∗ + λ1(y · µP ) + λ2(y · y − 1).

Setting ∂L
∂yω

= 0 gives 2λ2y = µ∗ − λ1µ
P . Then y · µP = 0 implies 0 = µ∗ · µP − λ1∥µP∥2 and

y · y = 1 implies 2λ2 = µ∗ · y − λ1µ
P · y = µ∗ · y. Thus, λ1 =

µ∗·µP

∥µP ∥2 , so that

2λ2y = µ∗ −
(
µ∗ · µP

∥µP∥2

)
µP .

Since 2λ2 = µ∗ · y, this implies (µ∗ · y)y = µ∗ −
(

µ∗·µP

∥µP ∥2

)
µP . Thus, any solution y satisfies

(µ∗ · y)2 = ∥µ∗∥2 − (µ∗ · µP )2

∥µP∥2
= ∥µ∗∥2 − ∥µ∗∥2∥µP∥2 cos2 θ

∥µP∥2
= ∥µ∗∥2 sin2 θ

where θ ∈ (0, π
2
] is the angle (in radians) between µ∗ and µP . Thus, Lµ(s) = |y · µ∗| =

∥µ∗∥ sin θ, which is increasing in θ. Observe that Dµ(s) =
∥∥∥ µ∗

∥µ∗∥ −
µP

∥µP ∥

∥∥∥ is the length of the

chord connecting the points µ∗

∥µ∗∥ and µP

∥µP ∥ on the unit circle. The length of a chord with

central angle θ is 2 sin
(
θ
2

)
, which is strictly increasing on [0, π

2
]. Thus, Dµ(s) = 2 sin

(
θ
2

)
increases if and only if θ increases, so that Dµ(s) increases if and only if Lµ(s) increases.

A.10 Proof of Proposition 10

To see that (ii) implies (i), observe that
•

vA(µ̂) ̸= vA(µ̂) only if µ̂ belongs to a cell Q such

that
•

µQ /∈ µP . Every such Q is a singleton because
•

µ is less biased than µ, which implies

µP ⊆ •

µQ and, hence, that Q is a “new” cell. Thus,
•

vA(µ̂) = vA(µ̂) ≥ vA(µ̂).

To prove that (i) implies (ii), first apply Proposition 9 to get that
•

µ is less biased than

µ. Therefore, µP ⊆ •

µQ. We need to show that Q is finer than P and that every cell Q such

that
•

µQ ∈ •

µQ\µP is a singleton.

First, we verify that Q is finer than P . Suppose toward a contradication that there is a

cell Q ∈ Q that intersects two or more distinct cells of P . There is a unique P ∈ P such

that
•

µQ ∈ P . Let P ′ ̸= P be another cell of P such that Q ∩ P ′ ̸= ∅. Clearly, •

µQ /∈ P ′. Let

∂P ′ denote the boundary of P ′. There are two cases.

Case 1:
•

µQ /∈ ∂P ′ . Then, since P ′ is convex, there exists x ∈ RN that strictly separates
•

µQ and P ′: x · •

µQ > 0 > x · µ̂ for all µ̂ ∈ P ′. Let A = {x, 0}. Then vA(µ̂′) = 0 for all

µ̂′ ∈ Q∩P ′ because 0 > x ·µP ′
. However,

•

vA(µ̂′) = x · µ̂′ for all µ̂′ ∈ Q∩P ′ because x · •

µQ > 0.

Since 0 > x·µ̂′ for all µ̂′ ∈ Q∩P ′, it follows that
•

vA(µ̂′) < vA(µ̂′) for such µ̂′, a contradiction.
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Case 2:
•

µQ ∈ ∂P ′. Then P ′ is not a singleton (otherwise µP ′
=

•

µQ /∈ P ′), forcing P ′ to

be regular. Moreover, Q is regular because it intersects the (disjoint) sets P and P ′. Thus,

there are disjoint open neighborhoods NQ ⊆ Q and NP ′ ⊆ P ′ of
•

µQ and µP ′
. Since NQ

and NP ′ are convex, there exists x ∈ RN that strictly separates them: x · µ̂ > 0 > x · µ̂′

for all µ̂ ∈ NQ and µ̂′ ∈ NP ′ . Moreover,
•

µQ ∈ Q ∩ ∂P ′ implies NQ ∩ P ′ ̸= ∅, where ∂P ′;

by regularity, NQ ∩ P ′ is a full-dimensional subset of Q ∩ P ′. Perturb x so that the plane

x · µ̂ = 0 passes through the interior of NQ ∩ P ′ (but not the point
•

µQ); this can be done by

shifting the plane toward the point
•

µQ. Then x no longer separates NQ and NP ′ , but the set

C := {µ̂ ∈ NQ ∩ P ′ : 0 > x · µ̂} is nonempty, and we still have x · •

µQ > 0 and 0 > x · µ̂′ for

all µ̂′ ∈ NP ′ . Letting A = {x, 0}, it follows that vA(µ̂) = 0 > x · µ̂ =
•

vA(µ̂) for all µ̂ ∈ C, a

contradiction.

Next, we verify that every cell Q such that
•

µQ ∈ •

µQ\µP is a singleton. Suppose toward

a contradiction that there exists
•

µQ ∈ •

µQ\µP such that Q is not a singleton. Since
•

µ

is more sophisticated than µ, there is a unique P ∈ P such that Q ⊆ P . Note that

µP =
•

µP ∈ •

µP . Since µQ belongs to the relative interior of Q, there exists µ∗ ∈ Q such that
•

µQ /∈ {αµ∗ + (1− α)µP : α ∈ [0, 1]} := L. The set L is closed and convex, and therefore can

be strictly separated from
•

µQ: there exists x ∈ RN such that x · •

µQ > 0 > x · µ̂ for all µ̂ ∈ L.

In particular, both x · µ∗ < 0 and x · µP < 0. Let A = {0, x}. Then, at (Bayesian) posterior
µ∗ ∈ Q ⊆ P , the ⟨P , µP⟩ representation selects 0 from A: vA(µ∗) = 0. Under representation

⟨Q, µQ⟩, however, x is selected from A at posterior µ∗ because µ∗ ∈ Q and x · •

µQ > 0. Thus,
•

vA(µ∗) = x · µ∗ < 0, so that
•

vA(µ∗) < vA(µ∗).
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