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Abstract

This appendix provides additional results for Jakobsen (2025). Section 1 contrasts

Coarse Bayesian updating with a class of maximum-likelihood updating rules and the

categorical-thinking model of Mullainathan (2002). Section 2 provides some basic

results on observational learning and the identification of Coarse Bayesian Represen-

tations from state-contingent choice data.

1 Paradigm Shifts and Maximum-Likelihood Updating

In the competing-theories interpretation of the model, the agent employs subjective thresh-

olds (the partition) for switching among candidate beliefs. It is natural to wonder if such

behavior can be reformulated in terms of second-order beliefs. If an agent assigns a prior

degree of confidence to each feasible theory, can Coarse Bayesian updating be reconciled

with Bayesian updating of such second-order beliefs?

To answer this question, I take an approach similar to that of Ortoleva (2012), who

introduces the Hypothesis-Testing (HT) model. Under HT, an agent applies Bayes’ rule

for signals of sufficiently high prior likelihood (that is, above some threshold ε ≥ 0, an

individual parameter). For unexpected signals (likelihood less than ε), the agent experiences

a “paradigm shift” and updates beliefs by applying a maximum-likelihood criterion to a

second-order prior, or “prior over priors.” Specifically, the agent updates the second-order

prior via Bayes’ rule, then adopts as posterior a belief of maximal probability under the
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revised second-order distribution. In this section, I consider a similar maximum-likelihood

procedure, adapted to the domain S of noisy signals.1

Definition 7. A Homogeneous, Convex updating rule µ has a Maximum-Likelihood

(ML) Representation if there exists a probability distribution Γ over ∆ (with density

γ) such that, for all s ∈ S,

µs ∈ argmax
µ̂∈∆

γ(µ̂)µ̂ · s.

The function L : ∆× S → R given by L(µ̂|s) = γ(µ̂)µ̂ · s is the likelihood function.

In a Maximum-Likelihood Representation, the agent has a second-order prior Γ that he

updates, via Bayes’ rule, upon arrival of signal s. Then, he selects a belief of maximal

probability under the new second-order distribution. This procedure selects among beliefs µ̂

that maximize the likelihood function at s.2 Intuitively, ML updating captures the behavior

of an agent who assigns prior degrees of confidence to competing theories, updates these

values in a Bayesian fashion, and selects the most-likely theory given available information.3

Proposition 11.

(i) Not every Maximum-Likelihood rule can be expressed as a Coarse Bayesian rule.

(ii) Not every Coarse Bayesian rule can be expressed as a Maximum-Likelihood rule.

(iii) If N = 2, then every Coarse Bayesian rule is a Maximum-Likelihood rule.

(iv) Bayesian updating is a special case of both Coarse Bayesian and Maximum-Likelihood

updating. To express Bayesian updating as a Maximum-Likelihood rule, take

γ(µ̂) ∝
∥∥∥∥ µ̂√

µe

∥∥∥∥−1

(1)

where
√
µe := (

√
µe
ω)ω∈Ω.

Proposition 11 establishes that neither updating procedure subsumes the other—there

1As Weinstein (2017) explains, the HT model allows essentially any updating to occur for unexpected
news (ie, likelihood less than ε). As we shall see, extending maximum-likelihood updating procedures to the
domain of noisy signals does rule out some updating behavior.

2Notice that L is homogeneous (of degree 1) and convex in s. The restriction to Homogeneous, Convex
updating rules, therefore, only takes effect when there are ties—multiple candidate beliefs that maximize L.

3There are other ways of reducing a second-order belief to a first-order belief. For example, one might
use the second-order distribution to compute an average belief. However, such a procedure is continuous in
s while Coarse Bayesian updating, in general, exhibits discontinuities in s.
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exist updating rules that have Coarse Bayesian Representations but not ML Representa-

tions, and there exist updating rules that have ML Representations but not Coarse Bayesian

Representations. These claims are demonstrated by Examples 4 and 5 below. Part (iii) es-

tablishes an important special case: if there are only two states, then every Coarse Bayesian

rule can be expressed as a ML rule. Part (iv) asserts that Bayesian updating is a special case

of both models and provides an explicit formula for a second-order prior generating Bayesian

updating in the ML procedure. For proof of claims (iii) and (iv), see the appendix.

Example 4. Not every ML rule can be expressed as a Coarse Bayesian rule. Suppose

N = 2 and consider the distribution γ such that γ(µ1) = 3/4 and γ(µ2) = 1/4, where

µ1 = (1/3, 2/3) and µ2 = (3/4, 1/4). Observe that L(µ1|e) = γ(µ1)µ1 · e = γ(µ1) >

γ(µ2) = γ(µ2)µ2 · e = L(µ2|e); thus, µe = µ1. It is easy to verify that B(µe|s) = µ2

if and only if s1/s2 = 6. Therefore, to be consistent with a Coarse Bayesian updating

rule, we must have L(µ2|s) ≥ L(µ1|s) whenever s1/s2 = 6. Take s = (1, 1/6). Then

L(µ2|s) = 19/96 < 19/72 = L(µ1|s), so that the ML rule selects µ1 at s. This means the

rule is not Confirmatory, and therefore is inconsistent with Coarse Bayesian updating.

Example 5. Not every Coarse Bayesian rule can be expressed as a ML rule. Suppose N = 3

and consider a Coarse Bayesian Representation where P has two cells, P and P ′, with

µP = µe and µP ′
= µ′ ̸= µe. The boundary between P and P ′ corresponds to a hyperplane,

H, in S. We will choose H (hence, P) in such a way that no distribution γ on ∆ (with

support {µe, µ′}) generates the same updating behavior as ⟨P , µP⟩ under the ML procedure.

Observe that if γ generates the same updating behavior, then L(µe|s) = L(µ′|s) for all
s ∈ H. In particular, [γ(µe)µe − γ(µ′)µ′] · s = 0 for all s ∈ H. Therefore, to be consistent

with ML updating, the normal vector for H must be (a scalar multiple of) a member of the

set {λµe − (1−λ)µ′ : 0 < λ < 1}; the span of this set is a 2-dimensional subset of R3. Thus,

we may perturb the hyperplane H so that its normal does not belong to the required set.

As demonstrated by Example 4 above, ML updating rules may be incompatible with

Coarse Bayesian updating due to violations of Confirmation: ML rules are measurable with

respect to some partition of ∆ into convex cells, but cells need not contain their representative

elements. Below, I show that the categorical-thinking model of Mullainathan (2002) also

violates Confirmation in some cases, and for a similar reason. Rather than employing a

second-order prior to compute likelihoods and select posteriors, Mullainathan’s model uses

a particular formula to calculate “base rates” for candidate beliefs. Thus, the categorical-

thinking model is similar in spirit to a ML procedure, and the particular functional form
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employed can produce violations of Confirmation.

In contrast, Example 5 shows that with three or more states, Coarse Bayesian Repre-

sentations that can be represented as ML rules are unstable in that small perturbations of

the updating rule render a ML representation impossible. This is so because ML represen-

tations impose rigid constraints on how representative beliefs may be positioned relative to

cell boundaries. Thus, small perturbations to the boundaries or representative points render

the rule incompatible with ML updating.

1.1 Relationship to Mullainathan (2002)

In a working paper, Mullainathan (2002) develops a model of categorical thinking sharing

several features of Coarse Bayesian updating. In this section, I show that the categorical

thinking model (adapted to my framework of states and signals) satisfies Homogeneity and

Cognizance but not necessarily Confirmation.

Mullainathan works with a type space T and prior p where p(t) is the prior probability

of type t ∈ T . The analogous components in my model are the state space Ω and prior µe.

Data d in Mullainathan’s model is expressed as conditional probabilities p(d|t) indicating

the probability of observing the data given type t; in my model, data corresponds to a signal

realization s, and sω plays the role of p(d|t).
In Mullainathan’s model, a set C of probability distributions over T constitutes a set of

“categories”; these are feasible beliefs the agent can hold. Thus, the set C is analogous to

the set {µP : P ∈ P} in my model. For a category c and data d, p(d|c) is the probability of

generating data d in category c; this is analogous to s·µP , which is the probability of observing

signal s if µP is the true probability law. Finally, Mullainathan defines p(c) :=
∫
t
p(t)c(t) to

be the “base rate” of category c.4 In my model, the analogous rate is µe · µP .

Like Coarse Bayesians, agents in Mullainathan’s model partition the probability simplex

and assign posterior beliefs as a function of the cell containing the Bayesian posterior. Any set

C of categories is permitted; however, the partition is derived from C using an optimality

criterion resembling that of Maximum-Likelihood rules analyzed above. In particular, let

c∗(d) ∈ C denote the agent’s posterior after observing data d. Mullainathan requires that

c∗(d) ∈ argmax
c∈C

p(d|c)p(c). (2)

4I have modified the notation slightly; Mullainathan writes qc(·) instead of c(·) to indicate the probability
distribution over T associated with category c ∈ C.
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In my framework, the analogous condition is

µs ∈ argmax
µ̂∈Ĉ

(s · µ̂)(µe · µ̂), (3)

where Ĉ ⊆ ∆ is some set of feasible posteriors. This is very similar to maximization of

the likelihood function specified in Definition 7; the main difference is that my likelihood

functions use a second-order belief γ instead of the base rate p(c) proposed by Mullainathan.

Thus, Mullainathan’s model works by specifying a set C of categories (feasible posteriors)

from which criterion (2) selects posteriors after observing data d. Due to the functional forms

employed, it is as if there is a partition of the probability simplex such that the agent’s

selected posterior only depends on which cell contains the Bayesian posterior.

Unlike Coarse Bayesians, categorical thinkers need not satisfy Confirmation because con-

dition (2) does not guarantee that beliefs c∗(d) belong to the cell containing the Bayesian

posterior associated with data d.5 Below, I prove these claims in my framework (in particular,

employing condition (3)).

First, let Ĉ be a nonempty set of feasible posteriors. Suppose that some µ∗ ∈ Ĉ is a

solution to the maximization problem in (3) for both s and t. That is, µ∗ solves both

max
µ̂∈Ĉ

(s · µ̂)(µe · µ̂) and max
µ̂∈Ĉ

(t · µ̂)(µe · µ̂).

Then, if α, β ≥ 0, it follows at µ∗ solves maxµ̂∈Ĉ((αs + βt) · µ̂)(µe · µ̂). Consequently, the

map s 7→ argmaxµ̂∈Ĉ(s · µ̂)(µe · µ̂) is measurable with respect to a partition of S into convex

cones. As demonstrated in the proof of Theorem 1, such convex cones can be associated

with convex subsets of ∆ by mapping signals s to Bayesian posteriors B(µe|s).
Thus, any updating rule satisfying (3) satisfies Homogeneity and Cognizance if one re-

stricts attention to signals that yield unique solutions to the optimization problem. For

signals that involve ties, Homogeneity and/or Cognizance may be violated if the agent’s

tie-breaking selection is not Homogeneous or Convex.

A more substantive difference between Mullainathan’s model and Coarse Bayesian up-

dating is that condition (3) does not guarantee that the updating rule satisfies Confirmation.

To see this, suppose |Ω| = 2 and let µe = (1
3
, 2
3
). Suppose µ̂, µ̂′ ∈ Ĉ where µ̂ = (1

4
, 3
4
) and

µ̂′ = (1
5
, 4
5
). Let s = (3

8
, 9
16
). It follows that B(µe|s) = µ̂; so, Confirmation requires µ̂ to solve

maxµ̃∈Ĉ(s · µ̃)(µe · µ̃). However, (s · µ̂)(µe · µ̂) = 77
256

< 63
200

= (s · µ̂′)(µe · µ̂′). Thus, µ̂ is not

selected at s, violating Confirmation.

5Note that the partition in Mullainathan’s model typically has convex cells. Convexity fails only if the
maximization problem in (2) has more than one solution and the agent’s tie-breaking criterion is not convex.
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2 Observational Learning

What can be learned by observing a Coarse Bayesian? This section takes the position of an

outside analyst who observes the behavior of a Coarse Bayesian and uses these observations

to make inferences about the state of the world.

In such contexts, learning about the state is of course highly dependent on knowing or

learning the representation ⟨P , (µP )P∈P⟩ of the Coarse Bayesian. The main text establishes

that observing the Coarse Bayesian’s beliefs µs at arbitrary signals s is sufficient to identify

the representation. The main insights of this section involve inference when the signal s

observed by the Coarse Bayesian is not observed by the analyst. It will, however, be useful

to begin with a preliminary result establishing that signal-contingent choices (not posteriors)

of the Coarse Bayesian are sufficient to pin down ⟨P , (µP )P∈P⟩.
Given an updating rule µ : S → ∆, a signal s ∈ S and a menu A ∈ A, let

cs(A) := argmax
x∈A

x · µs.

Thus, the correspondence cs : A → A records optimal choices from menus A conditional on

signal s. For menus A,B such that B ⊆ A, let S(B|A) := {s ∈ S : cs(A) = B}; that is,

S(B|A) consists of all signals s that make B the set of optimal actions in A. If
•

µ is another

updating rule, the associated sets are denoted
•

S(B|A).

Proposition 12. Let ⟨P , (µP )P∈P⟩ and ⟨Q, (
•

µQ)Q∈Q⟩ be Coarse Bayesian Representations of

updating rules µ and
•

µ, respectively, such that µe =
•

µe. Then ⟨P , (µP )P∈P⟩ = ⟨Q, (
•

µQ)Q∈Q⟩
if and only if, for all A,B ∈ A, S(B|A) =

•

S(B|A).

Proof. Clearly, ⟨P , (µP )P∈P⟩ = ⟨Q, (
•

µQ)Q∈Q⟩ implies S(B|A) =
•

S(B|A) for all A,B ∈ A.

If ⟨P , (µP )P∈P⟩ ≠ ⟨Q, (
•

µQ)Q∈Q⟩, there is a signal s such that µs ̸= •

µs. Thus, there is a

hyperplane in RN that strictly separates µs and
•

µs, which immediately implies there is a

binary menu A = {x, y} such that cs(A) = {x} and
•

cs(A) = {y}; that is, S({x}|A) ̸=
•

S({x}|A).

By Proposition 12, a Coarse Bayesian Representation is pinned down by observing signal-

contingent action choices; crucially, this requires variation in the menu A, as (for example)

singleton menus A reveal nothing about behavior. The result implies that if two Coarse

Bayesians differ in any way—different cells, different representative points, or both—there

will be a menu A (in fact, a binary menu) and signal s where their choices differ. Since

Bayesian updating is a special case of Coarse Bayesian updating, this means (proper) Coarse
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Bayesians can be distinguished from standard Bayesians via their choice behavior.

I now turn attention to the learning problem when signal realizations are not directly

observed by the analyst. Some additional notation is needed for this exercise. Given an

experiment σ and a Coarse Bayesian Representation ⟨P , (µP )P∈P⟩ of an updating rule µ,

let σP denote the experiment formed by composing σ with P ; that is, for each P ∈ P ,

let sP :=
∑

s∈σ:µs=µP s and set σP := [sP : P ∈ P ]. Intuitively, σP is formed by merging

signals in σ that result in the same Coarse Bayesian belief, which means merged signals have

Bayesian posteriors belonging to a common cell P . This way, P effectively partitions signals

in σ, and signals s1, . . . , sn ∈ σ belonging to the same cell are merged into a single column

s1 + . . .+ sn. Clearly, this makes σP a Blackwell garbling of σ.

To study observational learning, I consider three different scenarios differing in what is

known to the analyst in advance and what the analyst observes. In each case, I assume

⟨P , (µP )P∈P⟩ is known to the analyst.

Scenario 1: The analyst knows σ and observes posterior beliefs.

In this case, the analyst can learn from the Coarse Bayesian as follows. By observing the

posterior µ̂ of the Coarse Bayesian, the analyst deduces via ⟨P , (µP )P∈P⟩ that µ̂ ∈ P and

therefore that the Coarse Bayesian saw a signal s such that µs = µP ; thus, the analyst effec-

tively observes sP as defined above. In general, observing the beliefs of a Coarse Bayesian

is equivalent to observing those of a Bayesian with information σP ; Coarse Bayesians with

finer partitions therefore provide Blackwell more-informative information to observers.

Scenario 2: The analyst knows σ and observes action choices only.

Relative to Scenario 1, this adds an additional layer of garbling from the analyst’s perspective.

Suppose the Coarse Bayesian’s choices from A, but not the associated posterior beliefs µ̂, are

available to the analyst. By choosing x ∈ A, the Coarse Bayesian reveals posterior beliefs µ̂

such that x is optimal at µ̂ (equivalently, the analyst learns that s ∈ S(x|A)), which amounts

to a set of cells P 1, . . . , P n ∈ P spanning all cells P i ∈ P where the representative µP i
makes

x optimal in A. Consequently, the analyst effectively observes the signal sP
1
+ . . . + sP

n
;

varying over all x ∈ A, then, clearly generates an overall information structure for the analyst

that is a Blackwell garbling of the information σP generated in Scenario 1.

Note that expanding A need not improve the information generated by action choices.

For example, expanding to A∪{z} eliminates all learning for the observer if z strictly domi-

nates all actions in A. More generally, adding actions to A need not improve the information

generated by a Bayesian decision maker, so it follows immediately that expanding A need
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not improve the information generated by Coarse Bayesian choices.6

Scenario 3: The analyst does not know σ.

The previous scenarios assumed that σ, but not its realization, was known to the analyst.

If σ is not known, then observations of the Coarse Bayesian become incomplete (or ambigu-

ous) signals. For example, observing the Coarse Bayesian’s posterior µ̂ reveals the cell P

containing the Bayesian posterior, but without knowledge of σ this only reveals that the

observed signal s satisfies B(µe|s) ∈ P , yielding a convex cone of possible signals. Unless the

analyst holds probabilistic beliefs about σ, this set of signals will not be reduced to a single

signal and the analyst only learns that B(µe|s) ∈ P . Observing actions (but not posteriors)

amplifies this problem.

A Proof of Proposition 11

Proof of part (iii). If every cell of ⟨P , µP⟩ is a singleton, then the agent is Bayesian and

the ML representation is established independently by the proof of part (iv) below. So, let

P ∗ ∈ P be a non-singleton cell. Let I denote the set of all Coarse Bayesian Representations

i = ⟨Q(i),
•

µQ(i)⟩ such that Q(i) is finite, P is finer than Q(i),
•

µQ(i) ⊆ µP , and P ∗ ∈ Q(i).

Define a partial order ≥I on I by i ≥I i′ if and only if Q(i) is finer than Q(i′) and
•

µQ(i) ⊇
•

µQ(i′). It is straightforward to verify that ≥I is a partial order and that for all i, i′ ∈ I, there

exists i∗ ∈ I such that i∗ ≥I i and i∗ ≥I i
′. Thus, (I,≥I) is a directed set.

For each ⟨Q,
•

µQ⟩ ∈ I, define a function γ : ∆ → [0,∞) as follows. Since N = 2, the

(finite) set
•

µQ can be arranged in decreasing order of state 1:
•

µQ = { •

µQ1 , . . . ,
•

µQM}, where
•

µQ1

1 >
•

µQ2

1 > . . . >
•

µQM
1 . Since P ∗ ∈ Q, there exists m∗ such that

•

µQm∗ = µP ∗
. For

1 ≤ m < M , let
•

µm denote the (unique) belief belonging to ∂Qm ∩ ∂Qm+1 (the boundaries

of Qm and Qm+1) and choose a signal sm such that B(µe|sm) =
•

µm. Now choose scalars

αm > 0 such that, for all 1 ≤ m < M , αm
•

µQm · sm = αm+1
•

µQm+1 · sm; taking αm∗ = 1 pins

down the αm uniquely. Now define γ by

γ(µ̂) =

αm if µ̂ =
•

µQm

0 otherwise
.

6For example, in A = {x, y}, Bayesian choices partition ∆ into three convex regions: beliefs where x
is optimal, beliefs where y is optimal, and beliefs where x and y are tied. Adding a third option, z, can
introduce a region where z is strictly optimal that intersects the original regions where x and y were optimal.
Thus, the new partition contains a larger number of cells but it does not refine the original partition. This
means information generated by the Bayesian need not improve at A∪{z}, and it is not difficult to construct
cases where information generated by the Coarse Bayesian does not improve, either.
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By construction,
•

µQm ∈ argmaxµ̂ γ(µ̂)µ̂ · s (that is,
•

µQm maximizes the likelihood function

associated with γ) if and only if B(µe|s) ∈ Qm. Moreover, every point γ(µ̂)µ̂, viewed as a

point in R2, is contained in the half-space bounded above by the line with normal s∗ passing

through µP ∗
, where s∗ is any signal such that B(µe|s∗) = µP ∗

. Thus, there exists a scalar

γ > 0 such that γ(µ̂) ∈ [0, γ] for all µ̂. Observe that the bound γ is independent of i.

Having defined a function γi : ∆ → [0, γ] for every i ∈ I, the family {γi}i∈I forms a net.

Each γi is an element of the (compact) product set [0, γ]∆, so that {γi}i∈I has a convergent

subnet. This means there is a directed set (J,≥J) and a function ι : J → I such that (a)

j ≥J j′ implies ι(j) ≥I ι(j′), (b) for every i ∈ I, there exists j ∈ J such that ι(j′) ≥I i for

all j′ ≥J j, and (c) the net {γι(j)}j∈J converges to some γ∗. Thus, for every µ̂ ∈ ∆, γι(j)(µ̂)

converges to a point γ∗(µ̂).

Let P ∈ P . By definition of (I,≥I) and properties (a) and (b) of (J,≥J), there exists

jP ∈ J such that P ∈ Q(ι(j)) and µP ∈ •

µP(ι(j)) for all j ≥J jP . Suppose s satisfies

B(µe|s) ∈ P . By construction, µP maximizes the likelihood function associated with γι(j) at

s if j ≥J jP : for every µ̂ ∈ ∆, γι(j)(µP )µP · s ≥ γι(j)(µ̂)µ̂ · s. Taking the limit of both sides

with respect to j yields γ∗(µP )µP ·s ≥ γ∗(µ̂)µ̂ ·s; thus, µP maximizes the likelihood function

associated with γ∗ at s.

Proof of part (iv). Notice that B(µe|s) = µ′ if and only if s ≈ µ′/µe := (µ′
ω/µ

e
ω)ω∈Ω. Thus, it

will suffice to verify that L(·|s) is maximized at µ′ for such signals s. This is done as follows.

Let s ∈ S. Then, for any µ̂ ∈ ∆, we have

L(µ̂|s) = γ(µ̂)µ̂ · s = µ̂

∥µ̂/
√
µe∥

· s = µ̂/
√
µe

∥µ̂/
√
µe∥

· s
√
µe =

∥∥∥∥ µ̂/
√
µe

∥µ̂/
√
µe∥

∥∥∥∥ ∥s√µe∥ cos θ

= ∥s
√
µe∥ cos θ

where θ is the angle (in radians) between µ̂/
√
µe and s

√
µe. Thus, L(·|s) is maximized at µ̂

where µ̂/
√
µe ≈ s

√
µe (because then θ = 0), implying µ̂ ≈ sµe ≈ µ′

µeµ
e = µ′.
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